Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806690

RESUMEN

Major depression (MD) and obesity are complex genetic disorders that are frequently comorbid. However, the study of both diseases concurrently remains poorly addressed and therefore the underlying genetic mechanisms involved in this comorbidity remain largely unknown. Here we examine the contribution of common and rare variants to this comorbidity through a next-generation sequencing (NGS) approach. Specific genomic regions of interest in MD and obesity were sequenced in a group of 654 individuals from the PISMA-ep epidemiological study. We obtained variants across the entire frequency spectrum and assessed their association with comorbid MD and obesity, both at variant and gene levels. We identified 55 independent common variants and a burden of rare variants in 4 genes (PARK2, FGF21, HIST1H3D and RSRC1) associated with the comorbid phenotype. Follow-up analyses revealed significantly enriched gene-sets associated with biological processes and pathways involved in metabolic dysregulation, hormone signaling and cell cycle regulation. Our results suggest that, while risk variants specific to the comorbid phenotype have been identified, the genes functionally impacted by the risk variants share cell biological processes and signaling pathways with MD and obesity phenotypes separately. To the best of our knowledge, this is the first study involving a targeted sequencing approach toward the study of the comorbid MD and obesity. The framework presented here allowed a deep characterization of the genetics of the co-occurring MD and obesity, revealing insights into the mutational and functional profile that underlies this comorbidity and contributing to a better understanding of the relationship between these two disabling disorders.

2.
Cell Mol Life Sci ; 81(1): 219, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758230

RESUMEN

HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.


Asunto(s)
Proteína HMGA1a , Sarcoma , Trabectedina , Trabectedina/farmacología , Humanos , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/genética , Sarcoma/metabolismo , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Animales , Línea Celular Tumoral , Ratones , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Pronóstico , Femenino , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/patología , Leiomiosarcoma/genética , Leiomiosarcoma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Hum Mol Genet ; 31(12): 2078-2089, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35022696

RESUMEN

Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.


Asunto(s)
COVID-19 , Virosis , COVID-19/genética , Humanos , Modelos Estadísticos , Enfermedades Raras/genética
4.
J Transl Med ; 22(1): 139, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321543

RESUMEN

BACKGROUND: Retinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP. METHODS: By mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa. RESULTS: A mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABARα1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa. CONCLUSIONS: The possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.


Asunto(s)
Retinitis Pigmentosa , Ratones , Animales , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Transducción de Señal
5.
Hum Genomics ; 17(1): 20, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894999

RESUMEN

BACKGROUND: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. RESULTS: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/ . CONCLUSION: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.


Asunto(s)
Colaboración de las Masas , Variaciones en el Número de Copia de ADN , Variaciones en el Número de Copia de ADN/genética , Genómica , Fenotipo , Bases de Datos Factuales
6.
Nature ; 554(7692): 311-316, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29414943

RESUMEN

The genus Citrus, comprising some of the most widely cultivated fruit crops worldwide, includes an uncertain number of species. Here we describe ten natural citrus species, using genomic, phylogenetic and biogeographic analyses of 60 accessions representing diverse citrus germ plasms, and propose that citrus diversified during the late Miocene epoch through a rapid southeast Asian radiation that correlates with a marked weakening of the monsoons. A second radiation enabled by migration across the Wallace line gave rise to the Australian limes in the early Pliocene epoch. Further identification and analyses of hybrids and admixed genomes provides insights into the genealogy of major commercial cultivars of citrus. Among mandarins and sweet orange, we find an extensive network of relatedness that illuminates the domestication of these groups. Widespread pummelo admixture among these mandarins and its correlation with fruit size and acidity suggests a plausible role of pummelo introgression in the selection of palatable mandarins. This work provides a new evolutionary framework for the genus Citrus.


Asunto(s)
Citrus/clasificación , Citrus/genética , Evolución Molecular , Especiación Genética , Genoma de Planta/genética , Genómica , Filogenia , Asia Sudoriental , Biodiversidad , Producción de Cultivos/historia , Haplotipos/genética , Heterocigoto , Historia Antigua , Migración Humana , Hibridación Genética
7.
Virol J ; 20(1): 226, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803348

RESUMEN

PURPOSE: Despite the extensive vaccination campaigns in many countries, COVID-19 is still a major worldwide health problem because of its associated morbidity and mortality. Therefore, finding efficient treatments as fast as possible is a pressing need. Drug repurposing constitutes a convenient alternative when the need for new drugs in an unexpected medical scenario is urgent, as is the case with COVID-19. METHODS: Using data from a central registry of electronic health records (the Andalusian Population Health Database), the effect of prior consumption of drugs for other indications previous to the hospitalization with respect to patient outcomes, including survival and lymphocyte progression, was studied on a retrospective cohort of 15,968 individuals, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020. RESULTS: Covariate-adjusted hazard ratios and analysis of lymphocyte progression curves support a significant association between consumption of 21 different drugs and better patient survival. Contrarily, one drug, furosemide, displayed a significant increase in patient mortality. CONCLUSIONS: In this study we have taken advantage of the availability of a regional clinical database to study the effect of drugs, which patients were taking for other indications, on their survival. The large size of the database allowed us to control covariates effectively.


Asunto(s)
COVID-19 , Humanos , Estudios Retrospectivos , COVID-19/epidemiología , Resultado del Tratamiento , Bases de Datos Factuales , Furosemida
8.
Epidemiol Infect ; 151: e201, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37997654

RESUMEN

This study aimed to assess the ability of a real-time reverse transcription polymerase chain reaction (RT-PCR) with multiple targets to detect SARS-CoV-2 and its variants in a single test. Nasopharyngeal specimens were collected from patients in Granada, Spain, between January 2021 and December 2022. Five allele-specific RT-PCR kits were used sequentially, with each kit designed to detect a predominant variant at the time. When the Alpha variant was dominant, the kit included the HV69/70 deletion, E and N genes. When Delta replaced Alpha, the kit incorporated the L452R mutation in addition to E and N genes. When Omicron became dominant, L452R was replaced with the N679K mutation. Before incorporating each variant kit, a comparative analysis was carried out with SARS-CoV-2 whole genome sequencing (WGS). The results demonstrated that RT-PCR with multiple targets can provide rapid and effective detection of SARS-CoV-2 and its variants in a single test. A very high degree of agreement (96.2%) was obtained between the comparison of RT-PCR and WGS. Allele-specific RT-PCR assays make it easier to implement epidemiological surveillance systems for effective public health decision making.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/genética , Alelos , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Prueba de COVID-19
9.
Nucleic Acids Res ; 49(D1): D1130-D1137, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32990755

RESUMEN

The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variability worldwide. CSVS is also part of the GA4GH Beacon network. CSVS can be accessed at: http://csvs.babelomics.org/.


Asunto(s)
Colaboración de las Masas , Bases de Datos Genéticas , Genética de Población/métodos , Genoma Humano , Programas Informáticos , Alelos , Mapeo Cromosómico , Exoma , Frecuencia de los Genes , Variación Genética , Genómica , Humanos , Internet , Medicina de Precisión/métodos , España
10.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108611

RESUMEN

The reprogramming of metabolism is a recognized cancer hallmark. It is well known that different signaling pathways regulate and orchestrate this reprogramming that contributes to cancer initiation and development. However, recent evidence is accumulating, suggesting that several metabolites could play a relevant role in regulating signaling pathways. To assess the potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic models. Gaussian Processes, powerful machine learning methods, were used in combination with SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain potential causal relationships between the production of metabolites and the regulation of signaling pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The results presented here point to the existence of a complex crosstalk between signaling and metabolic pathways more complex than previously was thought.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Transducción de Señal , Aprendizaje Automático , Redes y Vías Metabólicas
11.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834179

RESUMEN

Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Sarcoma/patología , RNA-Seq , Perfilación de la Expresión Génica , Microambiente Tumoral/genética
12.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768752

RESUMEN

Recombination is an evolutionary strategy to quickly acquire new viral properties inherited from the parental lineages. The systematic survey of the SARS-CoV-2 genome sequences of the Andalusian genomic surveillance strategy has allowed the detection of an unexpectedly high number of co-infections, which constitute the ideal scenario for the emergence of new recombinants. Whole genome sequence of SARS-CoV-2 has been carried out as part of the genomic surveillance programme. Sample sources included the main hospitals in the Andalusia region. In addition to the increase of co-infections and known recombinants, three novel SARS-CoV-2 delta-omicron and omicron-omicron recombinant variants with two break points have been detected. Our observations document an epidemiological scenario in which co-infection and recombination are detected more frequently. Finally, we describe a family case in which co-infection is followed by the detection of a recombinant made from the two co-infecting variants. This increased number of recombinants raises the risk of emergence of recombinant variants with increased transmissibility and pathogenicity.


Asunto(s)
COVID-19 , Coinfección , Humanos , Coinfección/epidemiología , COVID-19/epidemiología , SARS-CoV-2/genética , Evolución Biológica , Genómica
13.
PLoS Comput Biol ; 17(2): e1008748, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571195

RESUMEN

MIGNON is a workflow for the analysis of RNA-Seq experiments, which not only efficiently manages the estimation of gene expression levels from raw sequencing reads, but also calls genomic variants present in the transcripts analyzed. Moreover, this is the first workflow that provides a framework for the integration of transcriptomic and genomic data based on a mechanistic model of signaling pathway activities that allows a detailed biological interpretation of the results, including a comprehensive functional profiling of cell activity. MIGNON covers the whole process, from reads to signaling circuit activity estimations, using state-of-the-art tools, it is easy to use and it is deployable in different computational environments, allowing an optimized use of the resources available.


Asunto(s)
Biología Computacional/métodos , Genómica , RNA-Seq , Transducción de Señal , Algoritmos , Línea Celular Tumoral , Bases de Datos Factuales , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Modelos Teóricos , Mutación , Programas Informáticos , Transcriptoma , Secuenciación del Exoma , Flujo de Trabajo
14.
Int J Mol Sci ; 23(15)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955799

RESUMEN

Endoglin (ENG) is a mesenchymal stem cell (MSC) marker typically expressed by active endothelium. This transmembrane glycoprotein is shed by matrix metalloproteinase 14 (MMP14). Our previous work demonstrated potent preclinical activity of first-in-class anti-ENG antibody-drug conjugates as a nascent strategy to eradicate Ewing sarcoma (ES), a devastating rare bone/soft tissue cancer with a putative MSC origin. We also defined a correlation between ENG and MMP14 expression in ES. Herein, we show that ENG expression is significantly associated with a dismal prognosis in a large cohort of ES patients. Moreover, both ENG/MMP14 are frequently expressed in primary ES tumors and metastasis. To deepen in their functional relevance in ES, we conducted transcriptomic and proteomic profiling of in vitro ES models that unveiled a key role of ENG and MMP14 in cell mechano-transduction. Migration and adhesion assays confirmed that loss of ENG disrupts actin filament assembly and filopodia formation, with a concomitant effect on cell spreading. Furthermore, we observed that ENG regulates cell-matrix interaction through activation of focal adhesion signaling and protein kinase C expression. In turn, loss of MMP14 contributed to a more adhesive phenotype of ES cells by modulating the transcriptional extracellular matrix dynamics. Overall, these results suggest that ENG and MMP14 exert a significant role in mediating correct spreading machinery of ES cells, impacting the aggressiveness of the disease.


Asunto(s)
Neoplasias Óseas , Endoglina/metabolismo , Sarcoma de Ewing , Neoplasias Óseas/genética , Endoglina/genética , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Proteómica , Receptores de Factores de Crecimiento , Sarcoma de Ewing/patología , Transducción de Señal
15.
BMC Bioinformatics ; 22(1): 343, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167460

RESUMEN

BACKGROUND: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field. RESULTS: Here, we present Autoimmune Diseases Explorer ( https://adex.genyo.es ), a database that integrates 82 curated transcriptomics and methylation studies covering 5609 samples for some of the most common autoimmune diseases. The database provides, in an easy-to-use environment, advanced data analysis and statistical methods for exploring omics datasets, including meta-analysis, differential expression or pathway analysis. CONCLUSIONS: This is the first omics database focused on autoimmune diseases. This resource incorporates homogeneously processed data to facilitate integrative analyses among studies.


Asunto(s)
Enfermedades Autoinmunes , Biología Computacional , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/genética , Bases de Datos Factuales , Humanos
16.
Mol Med ; 27(1): 50, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030623

RESUMEN

OBJECTIVE: To evaluate the taxonomic composition of the gut microbiome in gout patients with and without tophi formation, and predict bacterial functions that might have an impact on urate metabolism. METHODS: Hypervariable V3-V4 regions of the bacterial 16S rRNA gene from fecal samples of gout patients with and without tophi (n = 33 and n = 25, respectively) were sequenced and compared to fecal samples from 53 healthy controls. We explored predictive functional profiles using bioinformatics in order to identify differences in taxonomy and metabolic pathways. RESULTS: We identified a microbiome characterized by the lowest richness and a higher abundance of Phascolarctobacterium, Bacteroides, Akkermansia, and Ruminococcus_gnavus_group genera in patients with gout without tophi when compared to controls. The Proteobacteria phylum and the Escherichia-Shigella genus were more abundant in patients with tophaceous gout than in controls. Fold change analysis detected nine genera enriched in healthy controls compared to gout groups (Bifidobacterium, Butyricicoccus, Oscillobacter, Ruminococcaceae_UCG_010, Lachnospiraceae_ND2007_group, Haemophilus, Ruminococcus_1, Clostridium_sensu_stricto_1, and Ruminococcaceae_UGC_013). We found that the core microbiota of both gout groups shared Bacteroides caccae, Bacteroides stercoris ATCC 43183, and Bacteroides coprocola DSM 17136. These bacteria might perform functions linked to one-carbon metabolism, nucleotide binding, amino acid biosynthesis, and purine biosynthesis. Finally, we observed differences in key bacterial enzymes involved in urate synthesis, degradation, and elimination. CONCLUSION: Our findings revealed that taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Gota/metabolismo , Metagenoma , Metagenómica , Ácido Úrico/metabolismo , Biodiversidad , Biología Computacional/métodos , Gota/etiología , Gota/patología , Humanos , Metagenómica/métodos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
17.
Brief Bioinform ; 20(5): 1655-1668, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29868818

RESUMEN

Understanding the aspects of cell functionality that account for disease mechanisms or drug modes of action is a main challenge for precision medicine. Classical gene-based approaches ignore the modular nature of most human traits, whereas conventional pathway enrichment approaches produce only illustrative results of limited practical utility. Recently, a family of new methods has emerged that change the focus from the whole pathways to the definition of elementary subpathways within them that have any mechanistic significance and to the study of their activities. Thus, mechanistic pathway activity (MPA) methods constitute a new paradigm that allows recoding poorly informative genomic measurements into cell activity quantitative values and relate them to phenotypes. Here we provide a review on the MPA methods available and explain their contribution to systems medicine approaches for addressing challenges in the diagnostic and treatment of complex diseases.


Asunto(s)
Transducción de Señal , Biología de Sistemas/métodos , Algoritmos , Humanos , Cambios Post Mortem , Transcriptoma
18.
Brief Bioinform ; 20(3): 752-766, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29077790

RESUMEN

Success in precision medicine depends on accessing high-quality genetic and molecular data from large, well-annotated patient cohorts that couple biological samples to comprehensive clinical data, which in conjunction can lead to effective therapies. From such a scenario emerges the need for a new professional profile, an expert bioinformatician with training in clinical areas who can make sense of multi-omics data to improve therapeutic interventions in patients, and the design of optimized basket trials. In this review, we first describe the main policies and international initiatives that focus on precision medicine. Secondly, we review the currently ongoing clinical trials in precision medicine, introducing the concept of 'precision bioinformatics', and we describe current pioneering bioinformatics efforts aimed at implementing tools and computational infrastructures for precision medicine in health institutions around the world. Thirdly, we discuss the challenges related to the clinical training of bioinformaticians, and the urgent need for computational specialists capable of assimilating medical terminologies and protocols to address real clinical questions. We also propose some skills required to carry out common tasks in clinical bioinformatics and some tips for emergent groups. Finally, we explore the future perspectives and the challenges faced by precision medicine bioinformatics.


Asunto(s)
Biología Computacional , Medicina de Precisión , Estudios de Cohortes , Humanos
19.
Stem Cells ; 38(10): 1321-1325, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614127

RESUMEN

Increased pollution by plastics has become a serious global environmental problem, but the concerns for human health have been raised after reported presence of microplastics (MPs) and nanoplastics (NPs) in food and beverages. Unfortunately, few studies have investigate the potentially harmful effects of MPs/NPs on early human development and human health. Therefore, we used a new platform to study possible effects of polystyrene NPs (PSNPs) on the transcription profile of preimplantation human embryos and human induced pluripotent stem cells (hiPSCs). Two pluripotency genes, LEFTY1 and LEFTY2, which encode secreted ligands of the transforming growth factor-beta, were downregulated, while CA4 and OCLM, which are related to eye development, were upregulated in both samples. The gene set enrichment analysis showed that the development of atrioventricular heart valves and the dysfunction of cellular components, including extracellular matrix, were significantly affected after exposure of hiPSCs to PSNPs. Finally, using the HiPathia method, which uncovers disease mechanisms and predicts clinical outcomes, we determined the APOC3 circuit, which is responsible for increased risk for ischemic cardiovascular disease. These results clearly demonstrate that better understanding of NPs bioactivities and its implications for human health is of extreme importance. Thus, the presented platform opens further aspects to study interactions between different environmental and intracellular pollutions with the aim to decipher the mechanism and origin of human diseases.


Asunto(s)
Contaminación Ambiental/análisis , Nanopartículas/química , Plásticos/análisis , Poliestirenos/química , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Espacio Intracelular , Transcriptoma/genética , Resultado del Tratamiento
20.
Ann Bot ; 128(1): 115-125, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33693521

RESUMEN

BACKGROUND AND AIMS: The number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers. METHODS: We obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes. KEY RESULTS: Our analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions. CONCLUSIONS: Knowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.


Asunto(s)
Pool de Genes , Zea mays , Teorema de Bayes , Cloroplastos , Variación Genética , Genómica , Filogenia , Filogeografía , América del Sur , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA