Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 105(1): 71-82, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31073070

RESUMEN

Staining for CD27 and CD201 (endothelial protein C receptor) has been recently suggested as an alternative to stem cell antigen-1 (Sca1) to identify hematopoietic stem cells in inbred mouse strains with low or nil expression of SCA1. However, whether staining for CD27 and CD201 is compatible with low fms-like tyrosine kinase 3 (FLT3) expression and the "SLAM" code defined by CD48 and CD150 to identify mouse long-term reconstituting hematopoietic stem cells has not been established. We compared the C57BL/6 strain, which expresses a high level of SCA1 on hematopoietic stem cells to non-obese diabetic severe combined immune deficient NOD.CB17-prkdc scid/Sz (NOD-scid) mice and NOD.CB17-prkdc scid il2rg tm1Wj1/Sz (NSG) mice which both express low to negative levels of SCA1 on hematopoietic stem cells. We demonstrate that hematopoietic stem cells are enriched within the linage-negative C-KIT+ CD27+ CD201+ FLT3- CD48-CD150+ population in serial dilution long-term competitive transplantation assays. We also make the novel observation that CD48 expression is up-regulated in Lin- KIT+ progenitors from NOD-scid and NSG strains, which otherwise have very few cells expressing the CD48 ligand CD244. Finally, we report that unlike hematopoietic stem cells, SCA1 expression is similar on bone marrow endothelial and mesenchymal progenitor cells in C57BL/6, NOD-scid and NSG mice. In conclusion, we propose that the combination of Lineage, KIT, CD27, CD201, FLT3, CD48, and CD150 antigens can be used to identify long-term reconstituting hematopoietic stem cells from mouse strains expressing low levels of SCA1 on hematopoietic cells.


Asunto(s)
Diabetes Mellitus , Tirosina Quinasa 3 Similar a fms , Animales , Receptor de Proteína C Endotelial , Células Madre Hematopoyéticas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Receptores de Superficie Celular , Coloración y Etiquetado , Tirosina Quinasa 3 Similar a fms/genética
2.
Exp Eye Res ; 200: 108201, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32888962

RESUMEN

Mesenchymal stromal cells (MSC), with progenitor cell and immunological properties, have been cultivated from numerous vascularized tissues including bone marrow, adipose tissue and the corneal-limbus of the eye. After observing mesenchymal cells as contaminants in primary cultures of vascular endothelial cells derived from the choroidal tunic of the human eye, we investigated whether the choroid might also provide a source of cultured MSC. Moreover, we examined the effect of the choroidal stromal cells (Ch-SC) on the proliferation of freshly isolated choroidal vascular endothelial cells (ChVEC) in vitro. The phenotype of cultures established from five choroidal tissue donors was examined by flow cytometry and immunocytochemistry. The potential for mesenchymal cell differentiation was examined in parallel with MSC established from human bone marrow. Additional cultures were growth-arrested by treatment with mitomycin-C, before being tested as a potential feeder layer for ChVEC. The five unique cultures established from choroidal stroma displayed a phenotype consistent with the accepted definition for MSC (CD34-, CD45-, HLA-DR-, CD73+, CD90+, and CD105+), including the capacity for mesenchymal differentiation when cultivated under osteogenic, adipogenic and chondrogenic conditions. Growth-arrested Ch-SC inhibited the proliferation of ChVEC derived from five separate donors. Cultures of Ch-SC secreted approximately 40-fold higher concentrations of the anti-angiogenic factor pigment epithelium derived factor (PEDF/serpin F1) compared to the pro-angiogenic factor, vascular endothelial growth factor (VEGF), regardless of normal or growth-arrested state. Our results provide first evidence of a resident MSC cell type within the choroid and encourage investigation of new mechanisms for altering the growth of ChVEC.


Asunto(s)
Coroides/irrigación sanguínea , Células Endoteliales/citología , Endotelio Vascular/citología , Células Madre Mesenquimatosas/citología , Células del Estroma/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Coroides/citología , Citometría de Flujo , Humanos , Fenotipo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Trends Biochem Sci ; 39(4): 151-3, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24703407

RESUMEN

Multimedia communication capabilities are rapidly expanding, and visual information is easily shared electronically, yet funding bodies still rely on paper grant proposal submissions. Incorporating modern technologies will streamline the granting process by increasing the fidelity of grant communication, improving the efficiency of review, and reducing the cost of the process.


Asunto(s)
Multimedia , Revisión de la Investigación por Pares/métodos , Apoyo a la Investigación como Asunto/métodos , Papel
4.
Trends Biochem Sci ; 38(1): 1-2, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23157921

RESUMEN

Mass production of PhD training compromises graduate quality. As PhD quality becomes more stratified, industry will increasingly turn to quality-branded institutions and programs when distinguishing among job candidates.


Asunto(s)
Investigación Biomédica/normas , Educación de Postgrado/normas , Estudiantes , Humanos
5.
Trends Biochem Sci ; 38(7): 350-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23768999

RESUMEN

Complementary sequences at the 5' and 3' ends of the dengue virus RNA genome are essential for viral replication, and are believed to cyclise the genome through long-range base pairing in cis. Although consistent with evidence in the literature, this view neglects possible biologically active multimeric forms that are equally consistent with the data. Here, we propose alternative multimeric structures, and suggest that multigenome noncovalent concatemers are more likely to exist under cellular conditions than single cyclised monomers. Concatemers provide a plausible mechanism for the dengue virus to overcome the single-stranded (+)-sense RNA virus dilemma, and can potentially assist genome transport from the virus-induced vesicles into the cytosol.


Asunto(s)
Genoma Viral , Modelos Biológicos , Virus ARN/fisiología , ARN Viral/metabolismo , Replicación Viral , Virus del Dengue/genética , Virus del Dengue/fisiología , Conformación de Ácido Nucleico , ARN/biosíntesis , ARN/química , ARN/metabolismo , Virus ARN/genética , ARN Circular , ARN Viral/biosíntesis , ARN Viral/química
7.
Biomicrofluidics ; 18(2): 024101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38434908

RESUMEN

The heart is a metabolic "omnivore" and adjusts its energy source depending on the circulating metabolites. Human cardiac organoids, a three-dimensional in vitro model of the heart wall, are a useful tool to study cardiac physiology and pathology. However, cardiac tissue naturally experiences shear stress and nutrient fluctuations via blood flow in vivo, whilst in vitro models are conventionally cultivated in a static medium. This necessitates the regular refreshing of culture media, which creates acute cellular disturbances and large metabolic fluxes. To culture human cardiac organoids in a more physiological manner, we have developed a perfused bioreactor for cultures in a 96-well plate format. The designed bioreactor is easy to fabricate using a common culture plate and a 3D printer. Its open system allows for the use of traditional molecular biology techniques, prevents flow blockage issues, and provides easy access for sampling and cell assays. We hypothesized that a perfused culture would create more stable environment improving cardiac function and maturation. We found that lactate is rapidly produced by human cardiac organoids, resulting in large fluctuations in this metabolite under static culture. Despite this, neither medium perfusion in bioreactor culture nor lactate supplementation improved cardiac function or maturation. In fact, RNA sequencing revealed little change across the transcriptome. This demonstrates that cardiac organoids are robust in response to fluctuating environmental conditions under normal physiological conditions. Together, we provide a framework for establishing an easily accessible perfusion system that can be adapted to a range of miniaturized cell culture systems.

8.
Biofabrication ; 15(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36595260

RESUMEN

Spray nebulization is an elegant, but relatively unstudied, technique for scaffold production. Herein we fabricated mesh scaffolds of polycaprolactone (PCL) nanofibers via spray nebulization of 8% PCL in dichloromethane (DCM) using a 55.2 kPa compressed air stream and 17 ml h-1polymer solution flow rate. Using a refined protocol, we tested the hypothesis that spray nebulization would simultaneously generate nanofibers and eliminate solvent, yielding a benign environment at the point of fiber deposition that enabled the direct deposition of nanofibers onto cell monolayers. Nanofibers were collected onto a rotating plate 20 cm from the spray nozzle, but could be collected onto any static or moving surface. Scaffolds exhibited a mean nanofiber diameter of 910 ± 190 nm, ultimate tensile strength of 2.1 ± 0.3 MPa, elastic modulus of 3.3 ± 0.4 MPa, and failure strain of 62 ± 6%.In vitro, scaffolds supported growth of human keratinocyte cell epithelial-like layers, consistent with potential utility as a dermal scaffold. Fourier-transform infrared spectroscopy demonstrated that DCM had vaporized and was undetectable in scaffolds immediately following production. Exploiting the rapid elimination of DCM during fiber production, we demonstrated that nanofibers could be directly deposited on to cell monolayers, without compromising cell viability. This is the first description of spray nebulization generating nanofibers using PCL in DCM. Using this method, it is possible to rapidly produce nanofiber scaffolds, without need for high temperatures or voltages, yielding a method that could potentially be used to deposit nanofibers onto cell cultures or wound sites.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Andamios del Tejido/química , Poliésteres/química , Polímeros , Ingeniería de Tejidos/métodos
9.
J Tissue Eng ; 14: 20417314231176901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529249

RESUMEN

The financial viability of a cell and tissue-engineered therapy may depend on the compatibility of the therapy with mass production and cryopreservation. Herein, we developed a method for the mass production and cryopreservation of 3D cartilage microtissues. Cartilage microtissues were assembled from either 5000 human bone marrow-derived stromal cells (BMSC) or 5000 human articular chondrocytes (ACh) each using a customized microwell platform (the Microwell-mesh). Microtissues rapidly accumulate homogenous cartilage-like extracellular matrix (ECM), making them potentially useful building blocks for cartilage defect repair. Cartilage microtissues were cultured for 5 or 10 days and then cryopreserved in 90% serum plus 10% dimethylsulfoxide (DMSO) or commercial serum-free cryopreservation media. Cell viability was maximized during thawing by incremental dilution of serum to reduce oncotic shock, followed by washing and further culture in serum-free medium. When assessed with live/dead viability dyes, thawed microtissues demonstrated high viability but reduced immediate metabolic activity relative to unfrozen control microtissues. To further assess the functionality of the freeze-thawed microtissues, their capacity to amalgamate into a continuous tissue was assess over a 14 day culture. The amalgamation of microtissues cultured for 5 days was superior to those that had been cultured for 10 days. Critically, the capacity of cryopreserved microtissues to amalgamate into a continuous tissue in a subsequent 14-day culture was not compromised, suggesting that cryopreserved microtissues could amalgamate within a cartilage defect site. The quality ECM was superior when amalgamation was performed in a 2% O2 atmosphere than a 20% O2 atmosphere, suggesting that this process may benefit from the limited oxygen microenvironment within a joint. In summary, cryopreservation of cartilage microtissues is a viable option, and this manipulation can be performed without compromising tissue function.

10.
J Tissue Eng ; 14: 20417314231177136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362901

RESUMEN

For bone marrow stromal cells (BMSC) to be useful in cartilage repair their propensity for hypertrophic differentiation must be overcome. A single day of TGF-ß1 stimulation activates intrinsic signaling cascades in BMSCs which subsequently drives both chondrogenic and hypertrophic differentiation. TGF-ß1 stimulation upregulates SP7, a transcription factor known to contribute to hypertrophic differentiation, and SP7 remains upregulated even if TGF-ß1 is subsequently withdrawn from the chondrogenic induction medium. Herein, we stably transduced BMSCs to express an shRNA designed to silence SP7, and assess the capacity of SP7 silencing to mitigate hypertrophy. SP7 silencing dampened both hypertrophic and chondrogenic differentiation processes, resulting in diminished microtissue size, impaired glycosaminoglycan production and reduced chondrogenic and hypertrophic gene expression. Thus, while hypertrophic features were dampened by SP7 silencing, chondrogenic differentation was also compromised. We further investigated the role of SP7 in monolayer osteogenic and adipogenic cultures, finding that SP7 silencing dampened characteristic mineralization and lipid vacuole formation, respectively. Overall, SP7 silencing affects the trilineage differentiation of BMSCs, but is insufficient to decouple BMSC hypertrophy from chondrogenesis. These data highlight the challenge of promoting BMSC chondrogenesis whilst simultaneously reducing hypertrophy in cartilage tissue engineering strategies.

11.
Cells ; 13(1)2023 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201241

RESUMEN

Chondrogenic induction of bone-marrow-derived stromal cells (BMSCs) is typically accomplished with medium supplemented with growth factors (GF) from the transforming growth factor-beta (TGF-ß)/bone morphogenetic factor (BMP) superfamily. In a previous study, we demonstrated that brief (1-3 days) stimulation with TGF-ß1 was sufficient to drive chondrogenesis and hypertrophy using small-diameter microtissues generated from 5000 BMSC each. This biology is obfuscated in typical large-diameter pellet cultures, which suffer radial heterogeneity. Here, we investigated if brief stimulation (2 days) of BMSC microtissues with BMP-2 (100 ng/mL) or growth/differentiation factor (GDF-5, 100 ng/mL) was also sufficient to induce chondrogenic differentiation, in a manner comparable to TGF-ß1 (10 ng/mL). Like TGF-ß1, BMP-2 and GDF-5 are reported to stimulate chondrogenic differentiation of BMSCs, but the effects of transient or brief use in culture have not been explored. Hypertrophy is an unwanted outcome in BMSC chondrogenic differentiation that renders engineered tissues unsuitable for use in clinical cartilage repair. Using three BMSC donors, we observed that all GFs facilitated chondrogenesis, although the efficiency and the necessary duration of stimulation differed. Microtissues treated with 2 days or 14 days of TGF-ß1 were both superior at producing extracellular matrix and expression of chondrogenic gene markers compared to BMP-2 and GDF-5 with the same exposure times. Hypertrophic markers increased proportionally with chondrogenic differentiation, suggesting that these processes are intertwined for all three GFs. The rapid action, or "temporal potency", of these GFs to induce BMSC chondrogenesis was found to be as follows: TGF-ß1 > BMP-2 > GDF-5. Whether briefly or continuously supplied in culture, TGF-ß1 was the most potent GF for inducing chondrogenesis in BMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Factor 5 de Diferenciación de Crecimiento/farmacología , Médula Ósea , Condrogénesis , Factor de Crecimiento Transformador beta , Hipertrofia
12.
J R Soc Interface ; 20(207): 20230468, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817581

RESUMEN

If it were possible to purchase tumour-spheroids as a standardised product, ready for direct use in assays, this may contribute to greater research reproducibility, potentially reducing costs and accelerating outcomes. Herein, we describe a workflow where uniformly sized cancer tumour-spheroids are mass-produced using microwell culture, cryopreserved with high viability, and then cultured in neutral buoyancy media for drug testing. C4-2B prostate cancer or MCF-7 breast cancer cells amalgamated into uniform tumour-spheroids after 48 h of culture. Tumour-spheroids formed from 100 cells each tolerated the cryopreservation process marginally better than tumour-spheroids formed from 200 or 400 cells. Post-thaw, tumour-spheroid metabolic activity was significantly reduced, suggesting mitochondrial damage. Metabolic function was rescued by thawing the tumour-spheroids into medium supplemented with 10 µM N-Acetyl-l-cysteine (NAC). Following thaw, the neutral buoyancy media, Happy Cell ASM, was used to maintain tumour-spheroids as discrete tissues during drug testing. Fresh and cryopreserved C4-2B or MCF-7 tumour-spheroids responded similarly to titrations of Docetaxel. This protocol will contribute to a future where tumour-spheroids may be available for purchase as reliable and reproducible products, allowing laboratories to efficiently replicate and build on published research, in many cases, making tumour-spheroids simply another cell culture reagent.


Asunto(s)
Neoplasias de la Mama , Esferoides Celulares , Masculino , Humanos , Reproducibilidad de los Resultados , Evaluación Preclínica de Medicamentos , Criopreservación/métodos
13.
Biochem Biophys Res Commun ; 419(2): 142-7, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22266317

RESUMEN

Mesenchymal stem/stromal cells (MSC) are rapidly becoming a leading candidate for use in tissue regeneration, with first generation of therapies being approved for use in orthopaedic repair applications. Capturing the full potential of MSC will likely require the development of novel in vitro culture techniques and devices. Herein we describe the development of a straightforward surface modification of an existing commercial product to enable the efficient study of three dimensional (3D) human bone marrow-derived MSC osteogenic differentiation. Hundreds of 3D microaggregates, of either 42 or 168 cells each, were cultured in osteogenic induction medium and their differentiation was compared with that occurring in traditional two dimensional (2D) monolayer cultures. Osteogenic gene expression and matrix composition was significantly enhanced in the 3D microaggregate cultures. Additionally, BMP-2 gene expression was significantly up-regulated in 3D cultures at day 3 and 7 by approximately 25- and 30-fold, respectively. The difference in BMP-2 gene expression between 2D and 3D cultures was negligible in the more mature day 14 osteogenic cultures. These data support the notion that BMP-2 autocrine signalling is up-regulated in 3D MSC cultures, enhancing osteogenic differentiation. This study provides both mechanistic insight into MSC differentiation, as well as a platform for the efficient generation of microtissue units for further investigation or use in tissue engineering applications.


Asunto(s)
Comunicación Autocrina , Regeneración Ósea , Diferenciación Celular , Células Madre Mesenquimatosas/fisiología , Osteogénesis , Fosfatasa Alcalina/metabolismo , Comunicación Autocrina/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética
14.
Cell Tissue Res ; 347(3): 643-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22327437

RESUMEN

The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.


Asunto(s)
Cartílago Articular/patología , Matriz Extracelular/metabolismo , Microscopía , Donantes de Tejidos , Cicatrización de Heridas , Animales , Humanos , Ingeniería de Tejidos
15.
Biotechnol Lett ; 34(7): 1357-65, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22476548

RESUMEN

Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly L: -lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Nanofibras , Neuronas/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Técnicas de Cultivo de Célula/métodos , Ratones
16.
Stem Cell Reports ; 17(3): 616-632, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35180395

RESUMEN

Bone morphogenetic protein (BMP) cascades are upregulated during bone marrow-derived stromal cell (BMSC) chondrogenesis, contributing to hypertrophy and preventing effective BMSC-mediated cartilage repair. Previous work demonstrated that a proprietary BMP inhibitor prevented BMSC hypertrophy, yielding stable cartilage tissue. Because of the significant therapeutic potential of a molecule capable of hypertrophy blockade, we evaluated the capacity of a commercially available BMP type I receptor inhibitor with similar properties, LDN 193189, to prevent BMSC hypertrophy. Using 14-day microtissue chondrogenic induction cultures we found that LDN 193189 permitted BMSC chondrogenesis but did not prevent hypertrophy. LDN 193189 was sufficiently potent to counter mineralization and adipogenesis in response to exogenous BMP-2 in osteogenic induction cultures. LDN 193189 did not modify BMSC behavior in adipogenic induction cultures. Although LDN 193189 is effective in countering BMP signaling in a manner that influences BMSC fate, this blockade is insufficient to prevent hypertrophy.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Células de la Médula Ósea/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Humanos , Hipertrofia/metabolismo , Osteogénesis , Pirazoles , Pirimidinas
17.
Commun Biol ; 4(1): 29, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398032

RESUMEN

Virtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-ß (TGF-ß), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 103 BMSC each) to determine the duration of TGF-ß1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-ß1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-ß1 exposure. Despite cessation of TGF-ß1 exposure following 24 hours, intrinsic programming mediated further chondrogenic and hypertrophic BMSC differentiation. These important behaviors are obfuscated by diffusion gradients and heterogeneity in commonly used macro-pellet models (2 × 105 BMSC each). Use of more homogenous micro-pellet models will enable identification of the critical differentiation cues required, likely in the first 24-hours, to generate high quality cartilage-like tissue from BMSC.


Asunto(s)
Células de la Médula Ósea/fisiología , Condrocitos/fisiología , Condrogénesis , Ingeniería de Tejidos/métodos , Factor de Crecimiento Transformador beta1/fisiología , Cartílago Articular/citología , Humanos , Hipertrofia , Análisis de Secuencia de ARN
18.
Elife ; 102021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33423739

RESUMEN

Early-career researchers (ECRs) make up a large portion of the academic workforce and their experiences often reflect the wider culture of the research system. Here we surveyed 658 ECRs working in Australia to better understand the needs and challenges faced by this community. Although most respondents indicated a 'love of science', many also expressed an intention to leave their research position. The responses highlight how job insecurity, workplace culture, mentorship and 'questionable research practices' are impacting the job satisfaction of ECRs and potentially compromising science in Australia. We also make recommendations for addressing some of these concerns.


Asunto(s)
Selección de Profesión , Satisfacción en el Trabajo , Investigadores/estadística & datos numéricos , Recursos Humanos/estadística & datos numéricos , Australia
19.
Sci Rep ; 11(1): 5118, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664329

RESUMEN

Prostate cancer (PCa) patient-derived xenografts (PDXs) are commonly propagated by serial transplantation of "pieces" of tumour in mice, but the cellular composition of pieces is not standardised. Herein, we optimised a microwell platform, the Microwell-mesh, to aggregate precise numbers of cells into arrays of microtissues, and then implanted the Microwell-mesh into NOD-scid IL2γ-/- (NSG) mice to study microtissue growth. First, mesh pore size was optimised using microtissues assembled from bone marrow-derived stromal cells, with mesh opening dimensions of 100×100 µm achieving superior microtissue vascularisation relative to mesh with 36×36 µm mesh openings. The optimised Microwell-mesh was used to assemble and implant PCa cell microtissue arrays (hereafter microtissues formed from cancer cells are referred to as microtumours) into mice. PCa cells were enriched from three different PDX lines, LuCaP35, LuCaP141, and BM18. 3D microtumours showed greater in vitro viability than 2D cultures, but neither proliferated. Microtumours were successfully established in mice 81% (57 of 70), 67% (4 of 6), 76% (19 of 25) for LuCaP35, LuCaP141, and BM18 PCa cells, respectively. Microtumour growth was tracked using live animal imaging for size or bioluminescence signal. If augmented with further imaging advances and cell bar coding, this microtumour model could enable greater resolution of PCa PDX drug response, and lead to the more efficient use of animals. The concept of microtissue assembly in the Microwell-mesh, and implantation in vivo may also have utility in implantation of islets, hair follicles or other organ-specific cells that self-assemble into 3D structures, providing an important bridge between in vitro assembly of mini-organs and in vivo implantation.


Asunto(s)
Técnicas de Cultivo de Célula/normas , Xenoinjertos/trasplante , Neoplasias de la Próstata/genética , Ingeniería de Tejidos , Animales , Línea Celular Tumoral , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos NOD , Neoplasias de la Próstata/patología
20.
Biochem Biophys Res Commun ; 400(4): 466-70, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20732307

RESUMEN

Ascorbic acid (AA) is a common culture medium and dietary supplement. While AA is most commonly known for its antioxidant properties, it is also known to function as a pro-oxidant under select conditions. However, the complexity and often unknown composition of biological culture systems makes prediction of AA behaviour in supplemented cultures challenging. The frequent observation of outcomes inconsistent with antioxidant behaviour suggests that AA may be playing a pro-oxidant role more often than appreciated. In this work we explored the intracellular and extracellular impact of AA supplementation on KG1a myeloid leukaemia cells over a 24-h culture period following the addition of the AA supplement. At 24h we found that supplementation of AA up to 250µM resulted in intracellular antioxidant behaviour. However, when these same cultures were evaluated at 2 or 4h we observed pro-oxidant activity at the higher AA concentrations indicating that the outcome was very much time and dose dependent. In contrast, pro-oxidant activity was never observed in the extracellular medium. Paradoxically, and to our knowledge not previously reported, we observed that intracellular pro-oxidant activity and extracellular antioxidant activity could occur simultaneously. These results indicate that the precise activity of AA supplementation varies as a function of dose, time and cellular location. Further, these results demonstrate how in the absence of careful culture characterization the true impact of AA on cultures could be underappreciated.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Medios de Cultivo/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA