Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(5): 1049-1050, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203107

RESUMEN

Hundreds of different mutations in genes encoding a few dozen sarcomeric proteins cause two reciprocal human disease phenotypes, hypertrophic or dilated cardiomyopathy. How molecular dysfunction evokes different patterns of cardiac remodeling is unclear. Davis et al. describe a biophysical metric of cardiomyocyte function, the force-time integral, which predicts disease phenotype.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mutación , Corazón , Humanos , Fenotipo
2.
Physiol Rev ; 99(1): 853-892, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540226

RESUMEN

The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.


Asunto(s)
Autofagia/fisiología , Homeostasis/fisiología , Mitocondrias/metabolismo , Mitofagia/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Neoplasias/metabolismo
3.
Circ Res ; 132(11): e171-e187, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057625

RESUMEN

BACKGROUND: Cardiac contractile function requires high energy from mitochondria, and Ca2+ from the sarcoplasmic reticulum (SR). Via local Ca2+ transfer at close mitochondria-SR contacts, cardiac excitation feedforward regulates mitochondrial ATP production to match surges in demand (excitation-bioenergetics coupling). However, pathological stresses may cause mitochondrial Ca2+ overload, excessive reactive oxygen species production and permeability transition, risking homeostatic collapse and myocyte loss. Excitation-bioenergetics coupling involves mitochondria-SR tethers but the role of tethering in cardiac physiology/pathology is debated. Endogenous tether proteins are multifunctional; therefore, nonselective targets to scrutinize interorganelle linkage. Here, we assessed the physiological/pathological relevance of selective chronic enhancement of cardiac mitochondria-SR tethering. METHODS: We introduced to mice a cardiac muscle-specific engineered tether (linker) transgene with a fluorescent protein core and deployed 2D/3D electron microscopy, biochemical approaches, fluorescence imaging, in vivo and ex vivo cardiac performance monitoring and stress challenges to characterize the linker phenotype. RESULTS: Expressed in the mature cardiomyocytes, the linker expanded and tightened individual mitochondria-junctional SR contacts; but also evoked a marked remodeling with large dense mitochondrial clusters that excluded dyads. Yet, excitation-bioenergetics coupling remained well-preserved, likely due to more longitudinal mitochondria-dyad contacts and nanotunnelling between mitochondria exposed to junctional SR and those sealed away from junctional SR. Remarkably, the linker decreased female vulnerability to acute massive ß-adrenergic stress. It also reduced myocyte death and mitochondrial calcium-overload-associated myocardial impairment in ex vivo ischemia/reperfusion injury. CONCLUSIONS: We propose that mitochondria-SR/endoplasmic reticulum contacts operate at a structural optimum. Although acute changes in tethering may cause dysfunction, upon chronic enhancement of contacts from early life, adaptive remodeling of the organelles shifts the system to a new, stable structural optimum. This remodeling balances the individually enhanced mitochondrion-junctional SR crosstalk and excitation-bioenergetics coupling, by increasing the connected mitochondrial pool and, presumably, Ca2+/reactive oxygen species capacity, which then improves the resilience to stresses associated with dysregulated hyperactive Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Retículo Sarcoplasmático , Femenino , Ratones , Animales , Retículo Sarcoplasmático/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo
4.
Annu Rev Physiol ; 81: 1-17, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30256725

RESUMEN

The concept that mitochondria are highly dynamic is as widely accepted as it is untrue for a number of important contexts. Healthy mitochondria of the most energy-dependent and mitochondrial-rich mammalian organ, the heart, only rarely undergo fusion or fission and are seemingly static within cardiac myocytes. Here, we revisit mitochondrial dynamism with a fresh perspective developed from the recently discovered multifunctionality of mitochondrial fusion proteins and newly defined mechanisms for direct cross talk between mitochondrial dynamics, biogenesis, quality control, and trafficking pathways. Insights gained from comparing static mitochondrial biology in cardiac myocytes and dynamic mitochondrial biology in neurons are reviewed with the goal of understanding contextual fallacies of overly generalized characterizations of these essential and intriguing organelles.


Asunto(s)
Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neuronas/metabolismo , Neuronas/fisiología
5.
Genes Dev ; 29(19): 1981-91, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443844

RESUMEN

The mitochondrion is a complex organelle that serves essential roles in energy transduction, ATP production, and a myriad of cellular signaling events. A finely tuned regulatory network orchestrates the biogenesis, maintenance, and turnover of mitochondria. The high-capacity mitochondrial system in the heart is regulated in a dynamic way to generate and consume enormous amounts of ATP in order to support the constant pumping function in the context of changing energy demands. This review describes the regulatory circuitry and downstream events involved in mitochondrial biogenesis and its coordination with mitochondrial dynamics in developing and diseased hearts.


Asunto(s)
Cardiopatías/fisiopatología , Corazón/crecimiento & desarrollo , Mitocondrias/patología , Miocardio/metabolismo , Biogénesis de Organelos , Animales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia , Miocardio/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Am J Physiol Cell Physiol ; 323(2): C461-C477, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759434

RESUMEN

Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provide insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Cardiomiopatías/genética , GTP Fosfohidrolasas , Humanos , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología
7.
J Pharmacol Exp Ther ; 383(2): 137-148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36507849

RESUMEN

Mitofusin (MFN) 1 and MFN2 are dynamin GTPase family mitochondrial proteins that mediate mitochondrial fusion requiring MFN conformational shifts, formation of macromolecular complexes on and between mitochondria, and GTP hydrolysis. Damaging MFN2 mutations cause an untreatable, largely pediatric progressive peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 2A. We used small molecule allosteric mitofusin activators that promote MFN conformations favoring fusion to interrogate the effects of MFN2 conformation and GTPase activity on MFN2-mediated mitochondrial fusion and motility in vitro. We translated these findings in vivo by defining dose-dependent pharmacodynamic and disease-modifying effects of mitofusin activators in murine CMT2A. MFN2 catalytic GTPase activity and MFN2 conformational switching are essential for mitochondrial fusion, but the two processes are separate and dissociable. We report the first concentration-response relationships for mitofusin activators to stimulate mitochondrial transport through CMT2A neuronal axons, which is similar to their stimulation of mitochondrial fusion. In CMT2A mice, intermittent (daily short acting) and sustained (twice daily long acting) mitofusin activation were equally effective in reversing neuromuscular degeneration. Moreover, acute dose-dependent pharmacodynamic effects of mitofusin activators on mitochondrial transport through CMT2A neuronal axons anticipated those for long-term reversal of neurodegenerative phenotypes. A crossover study showed that CMT2A neuronal deficits recurred after mitofusin activators are discontinued, and revealed that CMT2A can be ameliorated by mitofusin activation even in old (>74 week) mice. These data add to our understanding of mitochondrial dysfunction induced by a CMT2A MFN2 GTPase mutation and provide additional information supporting the approach of pharmacological mitofusin activation in CMT2A. SIGNIFICANCE: This study interrogated the roles of MFN2 catalytic activity and allosteric activation on impaired mitochondrial fusion and neuronal transport as they impact an untreatable peripheral neuropathy caused by MFN2 mutations, Charcot-Marie-Tooth disease type 2A. The results mechanistically link mitochondrial fusion and motility to the relaxed MFN2 protein conformation and correction of mitochondrial abnormalities to in vivo reversal of neurodegeneration in murine CMT2A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Estudios Cruzados , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mutación
8.
Nature ; 540(7631): 74-79, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27775718

RESUMEN

Mitochondria are dynamic organelles that exchange contents and undergo remodelling during cyclic fusion and fission. Genetic mutations in MFN2 (the gene encoding mitofusin 2) interrupt mitochondrial fusion and cause the untreatable neurodegenerative condition Charcot-Marie-Tooth disease type 2A (CMT2A). It has not yet been possible to directly modulate mitochondrial fusion, in part because the structural basis of mitofusin function is not completely understood. Here we show that mitofusins adopt either a fusion-constrained or a fusion-permissive molecular conformation, directed by specific intramolecular binding interactions, and demonstrate that mitofusin-dependent mitochondrial fusion can be regulated in mouse cells by targeting these conformational transitions. On the basis of this model, we engineered a cell-permeant minipeptide to destabilize the fusion-constrained conformation of mitofusin and promote the fusion-permissive conformation, reversing mitochondrial abnormalities in cultured fibroblasts and neurons that harbour CMT2A-associated genetic defects. The relationship between the conformational plasticity of mitofusin 2 and mitochondrial dynamism reveals a central mechanism that regulates mitochondrial fusion, the manipulation of which can correct mitochondrial pathology triggered by defective or imbalanced mitochondrial dynamics.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Péptidos/farmacología , Animales , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , GTP Fosfohidrolasas/genética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Péptidos/química , Permeabilidad , Conformación Proteica/efectos de los fármacos
9.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35409362

RESUMEN

The pathophysiology of type 2 diabetes involves insulin and glucagon. Protein kinase C (Pkc)-δ, a serine-threonine kinase, is ubiquitously expressed and involved in regulating cell death and proliferation. However, the role of Pkcδ in regulating glucagon secretion in pancreatic α-cells remains unclear. Therefore, this study aimed to elucidate the physiological role of Pkcδ in glucagon secretion from pancreatic α-cells. Glucagon secretions were investigated in Pkcδ-knockdown InR1G9 cells and pancreatic α-cell-specific Pkcδ-knockout (αPkcδKO) mice. Knockdown of Pkcδ in the glucagon-secreting cell line InR1G9 cells reduced glucagon secretion. The basic amino acid arginine enhances glucagon secretion via voltage-dependent calcium channels (VDCC). Furthermore, we showed that arginine increased Pkcδ phosphorylation at Thr505, which is critical for Pkcδ activation. Interestingly, the knockdown of Pkcδ in InR1G9 cells reduced arginine-induced glucagon secretion. Moreover, arginine-induced glucagon secretions were decreased in αPkcδKO mice and islets from αPkcδKO mice. Pkcδ is essential for arginine-induced glucagon secretion in pancreatic α-cells. Therefore, this study may contribute to the elucidation of the molecular mechanism of amino acid-induced glucagon secretion and the development of novel antidiabetic drugs targeting Pkcδ and glucagon.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Animales , Arginina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Ratones , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo
10.
J Biol Chem ; 295(19): 6629-6640, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32165499

RESUMEN

Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion-endoplasmic reticulum tethering in osteoclasts.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Diferenciación Celular , GTP Fosfohidrolasas/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , Ratones , Ratones Noqueados , Mitofagia , Factores de Transcripción NFATC/genética , Osteoclastos/citología
11.
J Mol Cell Cardiol ; 142: 146-153, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32304672

RESUMEN

Mitochondria have their own genomes and their own agendas. Like their primitive bacterial ancestors, mitochondria interact with their environment and organelle colleagues at their physical interfaces, the outer mitochondrial membrane. Among outer membrane proteins, mitofusins (MFN) are increasingly recognized for their roles as arbiters of mitochondria-mitochondria and mitochondria-reticular interactions. This review examines the roles of MFN1 and MFN2 in the heart and other organs as proteins that tether mitochondria to each other or to other organelles, and as mitochondrial anchoring proteins for various macromolecular complexes. The consequences of MFN-mediated tethering and anchoring on mitochondrial fusion, motility, mitophagy, and mitochondria-ER calcium cross-talk are reviewed. Pathophysiological implications are explored from the perspective of mitofusin common functioning as tethering and anchoring proteins, rather than as mediators of individual processes. Finally, some informed speculation is provided for why mouse MFN knockout studies show severe multi-system phenotypes whereas rare human diseases linked to MFN mutations are limited in scope.


Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/genética , Animales , Transporte Biológico , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Humanos , Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Multimerización de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769940

RESUMEN

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Asunto(s)
Sistema Cardiovascular , Educación/métodos , Insuficiencia Cardíaca/terapia , Mitocondrias/fisiología , National Heart, Lung, and Blood Institute (U.S.) , Informe de Investigación , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Sistema Cardiovascular/patología , Educación/tendencias , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendencias , Informe de Investigación/tendencias , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias , Estados Unidos/epidemiología
13.
Am J Physiol Endocrinol Metab ; 317(2): E298-E311, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039007

RESUMEN

The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2 production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29-31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) (n = 5-7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2 production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.


Asunto(s)
Dieta Alta en Grasa , Mitocondrias Hepáticas/metabolismo , Esfuerzo Físico , Animales , Dieta con Restricción de Grasas , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Conducta Sedentaria , Caracteres Sexuales
14.
Proc Natl Acad Sci U S A ; 113(40): 11249-11254, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647893

RESUMEN

The discovery of the multiple roles of mitochondria-endoplasmic reticulum (ER) juxtaposition in cell biology often relied upon the exploitation of Mitofusin (Mfn) 2 as an ER-mitochondria tether. However, this established Mfn2 function was recently questioned, calling for a critical re-evaluation of Mfn2's role in ER-mitochondria cross-talk. Electron microscopy and fluorescence-based probes of organelle proximity confirmed that ER-mitochondria juxtaposition was reduced by constitutive or acute Mfn2 deletion. Functionally, mitochondrial uptake of Ca2+ released from the ER was reduced following acute Mfn2 ablation, as well as in Mfn2-/- cells overexpressing the mitochondrial calcium uniporter. Mitochondrial Ca2+ uptake rate and extent were normal in isolated Mfn2-/- liver mitochondria, consistent with the finding that acute or chronic Mfn2 ablation or overexpression did not alter mitochondrial calcium uniporter complex component levels. Hence, Mfn2 stands as a bona fide ER-mitochondria tether whose ablation decreases interorganellar juxtaposition and communication.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Embrión de Mamíferos/citología , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Eliminación de Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hígado/metabolismo , Ratones Noqueados , Mitocondrias/ultraestructura , Sondas Moleculares/metabolismo
15.
J Mol Cell Cardiol ; 121: 60-68, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969579

RESUMEN

G-protein receptor kinases (GRKs) regulate adult hearts by modulating inotropic, chronotropic and hypertrophic signaling of 7-transmembrane spanning neurohormone receptors. GRK-mediated desensitization and downregulation of ß-adrenergic receptors has been implicated in adult heart failure; GRKs are therefore a promising therapeutic target. However, germ-line (but not cardiomyocyte-specific) GRK2 deletion provoked lethal fetal heart defects, suggesting an unexplained role for GRKs in heart development. Here we undertook to better understand the consequences of GRK deficiency on fetal heart development by creating mice and cultured murine embryonic fibroblasts (MEFs) having floxed GRK2 and GRK5 alleles on the GRK6 null background; simultaneous conditional deletion of these 3 GRK genes was achieved using Nkx2-5 Cre or adenoviral Cre, respectively. Phenotypes were related to GRK-modulated gene expression using whole-transcriptome RNA sequencing, RT-qPCR, and luciferase reporter assays. In cultured MEFs the atypical 7-transmembrane spanning protein and GRK2 substrate Smoothened (Smo) stimulated Gli-mediated transcriptional activity, which was interrupted by deleting GRK2/5/6. Mice with Nkx2-5 Cre mediated GRK2/5/6 ablation died between E15.5 and E16.5, whereas mice expressing any one of these 3 GRKs (i.e. GRK2/5, GRK2/6 or GRK5/6 deleted) were developmentally normal. GRK2/5/6 triple null mice at E14.5 exhibited left and right heart blood intermixing through single atrioventricular valves or large membranous ventricular septal defects. Hedgehog and GATA pathway gene expression promoted by Smo/Gli was suppressed in GRK2/5/6 deficient fetal hearts and MEFs. These data indicate that GRK2, GRK5 and GRK6 redundantly modulate Smo-GATA crosstalk in fetal mouse hearts, orchestrating transcriptional pathways previously linked to clinical and experimental atrioventricular canal defects. GRK modulation of Smo reflects convergence of conventional neurohormonal signaling and transcriptional regulation pathways, comprising an unanticipated mechanism for spatiotemporal orchestration of developmental gene expression in the heart.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Receptor Smoothened/genética , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Corazón Fetal/fisiopatología , Fibroblastos/metabolismo , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Análisis de Secuencia de ARN , Transcriptoma/genética
16.
J Physiol ; 596(24): 6157-6171, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30062822

RESUMEN

KEY POINTS: Hepatic mitochondrial adaptations to physical activity may be regulated by mitochondrial biogenesis (PGC1α) and mitophagy (BNIP3). Additionally, these adaptations may be sex-dependent. Chronic increase in physical activity lowers basal mitochondrial respiratory capacity in mice. Female mice have higher hepatic electron transport system protein content, elevated respiratory capacity, lowered mitophagic flux, and emit less mitochondrial H2 O2 independent of physical activity. Males require chronic daily physical activity to attain a similar mitochondrial phenotype compared to females. In contrast, females have limited hepatic adaptations to chronic physical activity. Livers deficient in PGC1α and BNIP3 display similar mitochondrial adaptations to physical activity to those found in wild-type mice. ABSTRACT: Hepatic mitochondrial adaptations to physical activity may be regulated by biogenesis- and mitophagy-associated pathways in a sex-dependent manner. Here, we tested if mice with targeted deficiencies in liver-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α; LPGC1α+/- ) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-mediated mitophagy (BNIP3-/- ) would have reduced physical activity-induced adaptations in respiratory capacity, H2 O2 emission and mitophagy compared to wild-type (WT) controls and if these effects were impacted by sex. Male and female WT, LPGC1α+/- and BNIP3-/- C57BL6/J mice were divided into groups that remained sedentary or had access to daily physical activity via voluntary wheel running (VWR) (n = 6-10/group) for 4 weeks. Mice had ad libitum access to low-fat diet and water. VWR reduced basal mitochondrial respiration, increased mitochondrial coupling and altered ubiquitin-mediated mitophagy in a sex-specific manner in WT mice. Female mice of all genotypes displayed higher electron transport system content, displayed increased ADP-stimulated respiration, produced less mitochondrially derived reactive oxygen species, exhibited reduced mitophagic flux, and were less responsive to VWR compared to males. Males responded more robustly to VWR-induced changes in hepatic mitochondrial function resulting in a match to adaptations found in females. Deficiencies in PGC1α and BNIP3 alone did not largely alter mitochondrial adaptations to VWR. However, VWR restored sex-dependent abnormalities in mitophagic flux in LPGC1α+/- . Finally, BNIP3-/- mice had elevated mitochondrial content and increased mitochondrial respiration putatively through repressed mitophagic flux. In conclusion, hepatic mitochondrial adaptations to physical activity are more dependent on sex than PGC1α and BNIP3.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Actividad Motora/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Genotipo , Peróxido de Hidrógeno , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales
17.
Circ Res ; 118(12): 1960-91, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27126807

RESUMEN

Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.


Asunto(s)
American Heart Association , Cardiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Apoptosis , Metabolismo Energético , Estrés Oxidativo , Estados Unidos
18.
Biochim Biophys Acta ; 1857(8): 1307-1312, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26992930

RESUMEN

Parkin is familiar to many because of its link to Parkinson's disease, and to others because of its well-characterized role as a central factor mediating selective mitophagy of damaged mitochondria for mitochondrial quality control. The genetic connection between Parkin and Parkinson's disease derives from clinical gene-association studies, whereas our mechanistic understanding of Parkin functioning in mitophagy is based almost entirely on work performed in cultured cells. Surprisingly, experimental evidence linking the disease and the presumed mechanism derives almost entirely from fruit flies; germline Parkin deficient mice do not develop Parkinson's disease phenotypes. Moreover, genetic manipulation of Parkin signaling in mouse hearts does not support a central role for Parkin in homeostatic mitochondrial quality control in this mitochondria-rich and -dependent organ. Here, I provide an overview of data suggesting that (in mouse hearts at least) Parkin functions more as a stress-induced and developmentally-programmed facilitator of cardiomyocyte mitochondrial turnover. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016.


Asunto(s)
Dinaminas/genética , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/genética , Miocardio/metabolismo , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dinaminas/deficiencia , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Mitofagia/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas/deficiencia , Transducción de Señal , Ubiquitina-Proteína Ligasas/deficiencia
19.
Physiol Rev ; 90(3): 1013-62, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20664078

RESUMEN

This review examines the impact of recent discoveries defining personal genetics of adrenergic signaling polymorphisms on scientific discovery and medical practice related to cardiovascular diseases. The adrenergic system is the major regulator of minute-by-minute cardiovascular function. Inhibition of adrenergic signaling with pharmacological beta-adrenergic receptor antagonists (beta-blockers) is first-line therapy for heart failure and hypertension. Advances in pharmacology, molecular biology, and genetics of adrenergic signaling pathways have brought us to the point where personal genetic differences in adrenergic signaling factors are being assessed as determinants of risk or progression of cardiovascular disease. For a few polymorphisms, functional data generated in cell-based systems, genetic mouse models, and pharmacological provocation of human subjects are concordant with population studies that suggest altered risk of cardiovascular disease or therapeutic response to beta-blockers. For the majority of adrenergic pathway polymorphisms however, published data conflict, and the clinical relevance of individual genotyping remains uncertain. Here, the current state of laboratory and clinical evidence that adrenergic pathway polymorphisms can affect cardiovascular pathophysiology is comprehensively reviewed and compared, with a goal of placing these data in the broad context of potential clinical applicability.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Polimorfismo Genético , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Sistema Cardiovascular/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos
20.
Circ Res ; 116(1): 167-82, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25323859

RESUMEN

Mitochondrial research is experiencing a renaissance, in part, because of the recognition that these endosymbiotic descendants of primordial protobacteria seem to be pursuing their own biological agendas. Not only is mitochondrial metabolism required to produce most of the biochemical energy that supports their eukaryotic hosts (us) but mitochondria can actively (through apoptosis and programmed necrosis) or passively (through reactive oxygen species toxicity) drive cellular dysfunction or demise. The cellular mitochondrial collective autoregulates its population through biogenic renewal and mitophagic culling; mitochondrial fission and fusion, 2 components of mitochondrial dynamism, are increasingly recognized as playing central roles as orchestrators of these processes. Mitochondrial dynamism is rare in striated muscle cells, so cardiac-specific genetic manipulation of mitochondrial fission and fusion factors has proven useful for revealing noncanonical functions of mitochondrial dynamics proteins. Here, we review newly described functions of mitochondrial fusion/fission proteins in cardiac mitochondrial quality control, cell death, calcium signaling, and cardiac development. A mechanistic conceptual paradigm is proposed in which cell death and selective organelle culling are not distinct processes, but are components of a unified and integrated quality control mechanism that exerts different effects when invoked to different degrees, depending on pathophysiological context. This offers a plausible explanation for seemingly paradoxical expression of mitochondrial dynamics and death factors in cardiomyocytes wherein mitochondrial morphometric remodeling does not normally occur and the ability to recover from cell suicide is severely limited.


Asunto(s)
Mitocondrias Cardíacas/fisiología , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Animales , Muerte Celular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA