Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Chem Inf Model ; 63(24): 7642-7654, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38049389

RESUMEN

Machine learning (ML) methods have shown promise for discovering novel catalysts but are often restricted to specific chemical domains. Generalizable ML models require large and diverse training data sets, which exist for heterogeneous catalysis but not for homogeneous catalysis. The tmQM data set, which contains properties of 86,665 transition metal complexes calculated at the TPSSh/def2-SVP level of density functional theory (DFT), provided a promising training data set for homogeneous catalyst systems. However, we find that ML models trained on tmQM consistently underpredict the energies of a chemically distinct subset of the data. To address this, we present the tmQM_wB97MV data set, which filters out several structures in tmQM found to be missing hydrogens and recomputes the energies of all other structures at the ωB97M-V/def2-SVPD level of DFT. ML models trained on tmQM_wB97MV show no pattern of consistently incorrect predictions and much lower errors than those trained on tmQM. The ML models tested on tmQM_wB97MV were, from best to worst, GemNet-T > PaiNN ≈ SpinConv > SchNet. Performance consistently improves when using only neutral structures instead of the entire data set. However, while models saturate with only neutral structures, more data continue to improve the models when including charged species, indicating the importance of accurately capturing a range of oxidation states in future data generation and model development. Furthermore, a fine-tuning approach in which weights were initialized from models trained on OC20 led to drastic improvements in model performance, indicating transferability between ML strategies of heterogeneous and homogeneous systems.


Asunto(s)
Complejos de Coordinación , Redes Neurales de la Computación , Aprendizaje Automático , Hidrógeno , Termodinámica
2.
J Am Chem Soc ; 144(3): 1205-1217, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020383

RESUMEN

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.

3.
Acc Chem Res ; 54(4): 849-860, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33528245

RESUMEN

The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.

4.
Chemistry ; 27(31): 8127-8142, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769617

RESUMEN

What happens when a C-H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as "contra-electrostatic" H-bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H-bonding with an unusual contra-electrostatic component. While electrostatics is strongly stabilizing component in the conventional C-H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C-H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC-M-Cl systems. Such remarkable C-H⋅⋅⋅M interaction became experimentally accessible within (α-ICyDMe )MCl, NHC-Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C-H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set of d-orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C-H bond to point toward the metal, and reveals a still attractive "contra-electrostatic" H-bonding interaction.

5.
J Am Chem Soc ; 142(30): 13246-13254, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32609494

RESUMEN

The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chemistry, the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.

6.
J Am Chem Soc ; 142(18): 8352-8366, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249571

RESUMEN

A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.

7.
J Org Chem ; 84(4): 1853-1862, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30701976

RESUMEN

Computational analysis quantifies key trends in " peri"-radical cyclizations, a recently developed type of ring-forming reaction for the expansion of polyaromatic systems at the zigzag edge. Comparison of vinyl radical attack on the peri-position versus a topologically similar six-membered ring formation at the armchair edge reveals that the barriers for the peri-ring closure are slightly higher, even though the peri-attack is more exergonic. On the other hand, the intramolecular competition between the formation of a five-membered ring by ortho-attack at the armchair edge and formation of a six-membered ring by peri-attack at the zigzag edge clearly favors six-membered ring formation. The key novel finding is the unprecedented sensitivity of peri-cyclization to the presence and spatial orientation of a "spectator" propargylic -OMe substituent. Remarkably, formation of cis-products proceeds, in general, through a significantly (∼2-4 kcal/mol) lower barrier than formation of the trans-products, even when the cis-products are less stable. The origin of this unexpected effect is clearly stereoelectronic. These findings identify such remote substitution as a conceptually new tool for the control of rate and selectivity of radical reactions. The correlations of activation barriers for vinyl radical attack with aromaticity of the target show the expected relationship in phenanthrenes and pyrenes but not in anthracenes. In the latter case, the attack at the less aromatic ring corresponds to a higher barrier because a steric penalty on the stereoelectronically favorable cis-TS negates the accelerating influence of the properly aligned C-O and C-Sn bonds.

8.
J Org Chem ; 84(10): 6232-6243, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30993995

RESUMEN

A broad computational analysis of carbon-centered radical formation via the loss of either CO2 or SO2 from the respective RXO2 radical precursors (X = C or S) reveals dramatic differences between these two types of dissociative processes. Whereas the C-C scission with the loss of CO2 is usually exothermic, the C-S scission with the loss of SO2 is generally endothermic. However, two factors can make the C-S scissions thermodynamically favorable: increased entropy, characteristic for the dissociative processes, and stereoelectronic influences of substituents. The threshold between endergonic and exergonic C-S fragmentations depends on subtle structural effects. In particular, the degree of fluorination in a radical precursor has a notable impact on the reaction outcome. This study aims to demystify the intricacies in reactivity regarding the generation of radicals from sulfinates and carboxylates, as related to their role in radical cross-coupling.

9.
J Org Chem ; 84(16): 9897-9906, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31340636

RESUMEN

Herein, we report the 1JCH analyses, natural bond orbital analyses, and X-ray crystal structures of a number of C, O, and N constrained tricyclic cycles. These experiments provide access into the nature of the apparent Perlin effect previously reported in constrained tricyclic cycles, as well as evidence suggesting both steric contraction and long-range hyperconjugation account for the observed 1JCH perturbations. We report a true Perlin effect of 10.9 Hz in an azocane and large steric effect resulting in Δ1JC-H = 10.9 Hz in a cyclooctane.


Asunto(s)
Ciclooctanos/química , Cristalografía por Rayos X , Reacción de Cicloadición , Ciclooctanos/síntesis química , Electrónica , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
10.
Angew Chem Int Ed Engl ; 57(14): 3651-3655, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29405588

RESUMEN

Radical cyclization reactions at a peri position were used for the synthesis of polyaromatic compounds. Depending on the choice of reaction conditions and substrate, this flexible approach led to Bu3 Sn-substituted phenalene, benzanthrene, and olympicene derivatives. Subsequent reactions with electrophiles provided synthetic access to previously inaccessible functionalized polyaromatic compounds.

11.
Angew Chem Int Ed Engl ; 57(13): 3372-3376, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29385307

RESUMEN

The instability of hydroxy peroxyesters, the elusive Criegee intermediates of the Baeyer-Villiger rearrangement, can be alleviated by selective deactivation of the stereoelectronic effects that promote the 1,2-alkyl shift. Stable cyclic Criegee intermediates constrained within a five-membered ring can be prepared by mild reduction of the respective hydroperoxy peroxyesters (ß-hydroperoxy-ß-peroxylactones) which were formed in high yields in reaction of ß-ketoesters with BF3 ⋅Et2 O/H2 O2 .

12.
J Am Chem Soc ; 139(9): 3406-3416, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28187258

RESUMEN

The synergy between bond formation and bond breaking that is typical for pericyclic reactions is lost in their mechanistic cousins, cycloaromatization reactions. In these reactions, exemplified by the Bergman cyclization (BC), two bonds are sacrificed to form a single bond, and the reaction progress is interrupted at the stage of a cyclic diradical intermediate. The catalytic power of Au(I) in BC stems from a combination of two sources: stereoelectronic assistance of C-C bond formation (i.e., "LUMO umpolung") and crossover from a diradical to a zwitterionic mechanism that takes advantage of the catalyst's dual ability to stabilize both negative and positive charges. Not only does the synergy between the bond-forming and charge-delocalizing interactions lead to a dramatic (>hundred-billion-fold) acceleration, but the evolution of the two effects results in continuous reinforcement of the substrate/catalyst interaction along the cyclization path. This cooperativity converts the BC into the first example of an aborted [3,3] sigmatropic shift where the pericyclic "transition state" becomes the most stable species on the reaction hypersurface. Aborting the pericyclic path facilitates trapping of cyclic intermediate by a variety of further reactions and provides a foundation for the discovery of new modes of reactivity of polyunsaturated substrates. The application of distortion/interaction analysis allows us to quantify the increased affinity of Au-catalysts to the Bergman cyclization transition state as one of the key components of the large catalytic effect.

13.
J Am Chem Soc ; 139(31): 10799-10813, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28701041

RESUMEN

The first systematic study of the intramolecular α-effect, both in the stable ground-state structures and in the high-energy intermediates, was accomplished using the anomeric effect as an internal stereoelectronic probe. Contrary to the expectations based on the simple orbital mixing model, the lone pairs in a pair of neutral directly connected heteroatoms are not raised in energy to become stronger donors toward adjacent σ- and π-acceptors. Instead, the key n(X-Y)→σ*C-F interactions (X,Y = O,N) in the "α-systems" (both acyclic and constrained within a heterocyclohexane frame) are weaker than nX→σ*C-F interactions in "normal" systems. Surprisingly, polar solvent effects increase the apparent magnitude of α-effect as measured via increase in the anomeric stabilization. This behavior is opposite to the solvent dependence of normal systems where the anomeric effect is severely weakened by polar solvents. This contrasting behavior reflects the different balance of electrostatic and conjugative interactions in the two types of anomeric systems: the α-systems suffer less from the unfavorable orientation of bond dipoles in the equatorial conformer, a destabilizing electrostatic effect that is shielded by the polar environments. A weak α-effect is brought to life when the buttressing α-heteroatom bears a negative charge. However, electrostatic components mask the role of stabilizing orbital interactions. In contrast, the increased electron demand in carbocations and related electron-deficient TS- like structures does not lead to activation of the α-effect. As a consequence, we observed that ethers are better radical- and cation-stabilizing groups than peroxides. The latter finding should have significant implications for understanding the mechanistic complexity associated with the interaction of carbonyl compounds with hydroperoxides and H2O2 in acidic media, as such reactions involve α-cationic intermediates.

14.
Chemistry ; 23(14): 3225-3245, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-27862399

RESUMEN

Stereoelectronic factors account for the apparent reversal of donor-acceptor properties of a variety of functional groups by a simple change of their orientation in space. The new reactivity patterns that arise from spatial anisotropy are associated with chameleonic behavior of common organic functionalities.

15.
Chemistry ; 23(38): 9091-9097, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28399331

RESUMEN

A new, selective way to form C-C bonds has been developed. In this report, we disclose the homolytic aromatic substitution via C→O transposition coupled with the elimination of formaldehyde (as a traceless linker). Computational analysis indicates the selectivity can be tuned by sterics in the starting materials following an ipso-attack that leads to the C→O transposition.

16.
Angew Chem Int Ed Engl ; 56(5): 1298-1302, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28029205

RESUMEN

We developed the novel one-pot synthetic method of substituted triptycenes by the reaction of ynolates and arynes. This four-step process involves three cycloadditions and electrocyclic ring opening of the strained Dewar anthracene. Each of the three related but structurally distinct classes of nucleophiles (ynolate, enolate, and anthracenolate) reacts with o-benzyne in the same predictable manner controlled by chelation and negative hyperconjugation. The resulting functionalized C3 -symmetrical triptycenes hold promise in the design of functional materials.

17.
Angew Chem Int Ed Engl ; 56(18): 4955-4959, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28378382

RESUMEN

The value of stereoelectronic guidelines is illustrated by the discovery of a convenient, ozone-free synthesis of bridged secondary ozonides from 1,5-dicarbonyl compounds and H2 O2 . The tetraoxane products generally formed in reactions of carbonyl and dicarbonyl compounds with H2 O2 were not detected because the structural distortions imposed on the tetraoxacyclohexane subunit in [3.2.2]tetraoxanonanes by the three-carbon bridge leads to the partial deactivation of anomeric effects. The new procedure is readily scalable to produce gram quantities of the ozonides. This reaction enables the selective preparation of ozonides without the use of ozone.

18.
Angew Chem Int Ed Engl ; 55(38): 11633-7, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27534837

RESUMEN

This work discloses the first general solution for converting oligoalkynes into polyaromatic polycyclic systems free of pentagonal defects. The efficiency and selectivity of this cascade originate from the combination of the Bu3 Sn-mediated TDG (traceless directing group) cascade transformations of skipped alkynes where the reactivity of the key radical precursor is tempered by hybridization effects. This approach ensures that the final structure consists of only six-membered rings. Practical implementation of this strategy is readily accomplished by incorporation of a suitably-substituted alkene as a final unit in the domino transformation. This strategy opens a new avenue for the controlled preparation of polyaromatic ribbons. The resulting ester functionality can be used for an additional Friedel-Crafts ring closure which effectively anneals two extra cycles with distinct electronic features to the extended aromatic system formed by the radical cascade.

19.
J Am Chem Soc ; 137(3): 1165-80, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25539142

RESUMEN

We report the first example of a traceless directing group in a radical cascade. The chemo- and regioselectivity of the initial attack in skipped oligoalkynes is controlled by propargyl OR moiety. Radical translocations lead to the boomerang return of the radical center to the site of initial attack where it assists the elimination of the directing functionality via ß-scission in the last step of the cascade. The Bu3Sn moiety continues further via facile reactions with electrophiles as well as Stille and Suzuki cross-coupling reactions. This selective radical transformation opens a new approach for the controlled transformation of skipped oligoalkynes into polycyclic ribbons of tunable dimensions.

20.
Nat Rev Phys ; 4(12): 761-769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247217

RESUMEN

An oracle that correctly predicts the outcome of every particle physics experiment, the products of every possible chemical reaction or the function of every protein would revolutionize science and technology. However, scientists would not be entirely satisfied because they would want to comprehend how the oracle made these predictions. This is scientific understanding, one of the main aims of science. With the increase in the available computational power and advances in artificial intelligence, a natural question arises: how can advanced computational systems, and specifically artificial intelligence, contribute to new scientific understanding or gain it autonomously? Trying to answer this question, we adopted a definition of 'scientific understanding' from the philosophy of science that enabled us to overview the scattered literature on the topic and, combined with dozens of anecdotes from scientists, map out three dimensions of computer-assisted scientific understanding. For each dimension, we review the existing state of the art and discuss future developments. We hope that this Perspective will inspire and focus research directions in this multidisciplinary emerging field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA