Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Coral Reefs ; 42(1): 131-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36415309

RESUMEN

Increasing ocean temperatures threaten coral reefs globally, but corals residing in habitats that experience high thermal variability are thought to be better adapted to survive climate-induced heat stress. Here, we used long-term ecological observations and in situ temperature data from Heron Island, southern Great Barrier Reef to investigate how temperature dynamics within various thermally variable vs. thermally stable reef habitats change during a marine heatwave and the resulting consequences for coral community survival. During the heatwave, thermally variable habitats experienced larger surges in daily mean and maxima temperatures compared to stable sites, including extreme hourly incursions up to 36.5 °C. The disproportionate increase in heat stress in variable habitats corresponded with greater subsequent declines in hard coral cover, including a three-times greater decline within the thermally variable Reef Flat (70%) and Deep Lagoon (83%) than within thermally stable habitats along sheltered and exposed areas of the reef slope (0.3-19%). Interestingly, the thermally variable Reef Crest experienced comparatively small declines (26%), avoiding the most severe tidal ponding and resultant heat stress likely due to proximity to the open ocean equating to lower seawater residence times, greater mixing, and/or increased flow. These results highlight that variable thermal regimes, and any acclimatization or adaptation to elevated temperatures that may lead to, do not necessarily equate to protection against bleaching and mortality during marine heatwaves. Instead, thermally stable habitats that have greater seawater exchange with the open ocean may offer the most protection to corals during the severe marine heatwaves that accompany a changing climate. Supplementary Information: The online version contains supplementary material available at 10.1007/s00338-022-02328-6.

2.
Proc Biol Sci ; 289(1982): 20220941, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100023

RESUMEN

Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (µtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid-base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Ecosistema , Homeostasis , Concentración de Iones de Hidrógeno , Agua de Mar
3.
Glob Chang Biol ; 26(4): 2203-2219, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31955493

RESUMEN

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business-as-usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present-day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

4.
J Exp Biol ; 223(Pt 20)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087470

RESUMEN

The absorbtion of human-emitted CO2 by the oceans (elevated PCO2 ) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated PCO2  on a coral-algal symbiosis (Pocillopora acuta-Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated PCO2  (962 versus 431 µatm PCO2 ) had an interactive effect with midday light availability (400 versus 800 µmol photons m-2 s-1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-PCO2  and high-light conditions. Light-enhanced dark respiration increased under elevated PCO2  and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated PCO2  to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the 'one-two punch' of rising temperatures in the presence of an acidifying ocean.


Asunto(s)
Antozoos , Animales , Dióxido de Carbono , Clorofila A , Arrecifes de Coral , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares , Fotosíntesis , Agua de Mar , Temperatura
5.
Proc Biol Sci ; 286(1916): 20192153, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795848

RESUMEN

Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track 15N- and 13C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.


Asunto(s)
Poríferos/fisiología , Simbiosis , Animales , Arrecifes de Coral , Dinoflagelados/fisiología , Nitrógeno/metabolismo
6.
Glob Chang Biol ; 24(1): 465-480, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28727218

RESUMEN

The effects of global change on biological systems and functioning are already measurable, but how ecological interactions are being altered is poorly understood. Ecosystem resilience is strengthened by ecological functionality, which depends on trophic interactions between key species and resilience generated through biogenic buffering. Climate-driven alterations to coral reef metabolism, structural complexity and biodiversity are well documented, but the feedbacks between ocean change and trophic interactions of non-coral invertebrates are understudied. Sea cucumbers, some of the largest benthic inhabitants of tropical lagoon systems, can influence diel changes in reef carbonate dynamics. Whether they have the potential to exacerbate or buffer ocean acidification over diel cycles depends on their relative production of total alkalinity (AT ) through the dissolution of ingested calcium carbonate (CaCO3 ) sediments and release of dissolved inorganic carbon (CT ) through respiration and trophic interactions. In this study, the potential for the sea cucumber, Stichopus herrmanni, a bêche-de-mer (fished) species listed as vulnerable to extinction, to buffer the impacts of ocean acidification on reef carbonate chemistry was investigated in lagoon sediment mesocosms across diel cycles. Stichopus herrmanni directly reduced the abundance of meiofauna and benthic primary producers through its deposit-feeding activity under present-day and near-future pCO2 . These changes in benthic community structure, as well as AT (sediment dissolution) and CT (respiration) production by S. herrmanni, played a significant role in modifying seawater carbonate dynamics night and day. This previously unappreciated role of tropical sea cucumbers, in support of ecosystem resilience in the face of global change, is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean.


Asunto(s)
Biota/fisiología , Dióxido de Carbono/química , Cambio Climático , Pepinos de Mar/fisiología , Agua de Mar/química , Animales , Carbonatos/química , Arrecifes de Coral , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Océanos y Mares
7.
Oecologia ; 187(1): 25-35, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29574578

RESUMEN

The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.


Asunto(s)
Dióxido de Carbono , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
8.
Proc Natl Acad Sci U S A ; 112(43): 13219-24, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26438833

RESUMEN

Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.


Asunto(s)
Calcificación Fisiológica/fisiología , Arrecifes de Coral , Homeostasis/fisiología , Modelos Biológicos , Boro/análisis , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Océano Pacífico , Queensland
9.
J Phycol ; 53(2): 308-321, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27870065

RESUMEN

Corals at the world's southernmost coral reef of Lord Howe Island (LHI) experience large temperature and light fluctuations and need to deal with periods of cold temperature (<18°C), but few studies have investigated how corals are able to cope with these conditions. Our study characterized the response of key photophysiological parameters, as well as photoacclimatory and photoprotective pigments (chlorophylls, xanthophylls, and ß-carotene), to short-term (5-d) cold stress (~15°C; 7°C below control) in three LHI coral species hosting distinct Symbiodinium ITS2 types, and compared the coral-symbiont response to that under elevated temperature (~29°C; 7°C above control). Under cold stress, Stylophora sp. hosting Symbiodinium C118 showed the strongest effects with regard to losses of photochemical performance and symbionts. Pocillopora damicornis hosting Symbiodinium C100/C118 showed less severe bleaching responses to reduced temperature than to elevated temperature, while Porites heronensis hosting Symbiodinium C111* withstood both reduced and elevated temperature. Under cold stress, photoprotection in the form of xanthophyll de-epoxidation increased in unbleached P. heronensis (by 178%) and bleached Stylophora sp. (by 225%), while under heat stress this parameter increased in unbleached P. heronensis (by 182%) and in bleached P. damicornis (by 286%). The xanthophyll pool size was stable in all species at all temperatures. Our comparative study demonstrates high variability in the bleaching vulnerability of these coral species to low and high thermal extremes and shows that this variability is not solely determined by the ability to activate xanthophyll de-epoxidation.


Asunto(s)
Arrecifes de Coral , Dinoflagelados/fisiología , Frío , Dinoflagelados/metabolismo , Calor , Fotosíntesis/fisiología , Simbiosis
10.
Proc Biol Sci ; 283(1842)2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27807263

RESUMEN

The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described.


Asunto(s)
Antozoos/microbiología , Dinoflagelados/fisiología , Simbiosis , Temperatura , Animales , Antozoos/genética , Región del Caribe , ADN Espaciador Ribosómico/genética , Dinoflagelados/genética , Genotipo , Estrés Fisiológico
11.
Proc Natl Acad Sci U S A ; 110(38): 15342-7, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003127

RESUMEN

Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.


Asunto(s)
Contaminación del Aire/efectos adversos , Antozoos/crecimiento & desarrollo , Calcificación Fisiológica/fisiología , Calcio/metabolismo , Dióxido de Carbono/análisis , Arrecifes de Coral , Agua de Mar/química , Análisis de Varianza , Animales , Antozoos/metabolismo , Conservación de los Recursos Naturales , Cartilla de ADN/genética , Sedimentos Geológicos/microbiología , Metagenoma/genética , Océano Pacífico , Reacción en Cadena de la Polimerasa , Queensland , Estaciones del Año , Temperatura
12.
J Environ Manage ; 182: 641-650, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27564868

RESUMEN

Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Animales , Australia , Análisis Costo-Beneficio , Explotaciones Pesqueras , Peces , Concentración de Iones de Hidrógeno , Biología Marina , Océanos y Mares
13.
BMC Evol Biol ; 15: 48, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25887897

RESUMEN

BACKGROUND: The diversity of the symbiotic dinoflagellate Symbiodinium sp., as assessed by genetic markers, is well established. To what extent this diversity is reflected on the amino acid level of functional genes such as enzymatic antioxidants that play an important role in thermal stress tolerance of the coral-Symbiodinium symbiosis is, however, unknown. Here we present a predicted structural analysis and phylogenetic characterization of the enzymatic antioxidant repertoire of the genus Symbiodinium. We also report gene expression and enzymatic activity under short-term thermal stress in Symbiodinium of the B1 genotype. RESULTS: Based on eight different ITS2 types, covering six clades, multiple protein isoforms for three of the four investigated antioxidants (ascorbate peroxidase [APX], catalase peroxidase [KatG], manganese superoxide dismutase [MnSOD]) are present in the genus Symbiodinium. Amino acid sequences of both SOD metalloforms (Fe/Mn), as well as KatG, exhibited a number of prokaryotic characteristics that were also supported by the protein phylogeny. In contrast to the bacterial form, KatG in Symbiodinium is characterized by extended functionally important loops and a shortened C-terminal domain. Intercladal sequence variations were found to be much higher in both peroxidases, compared to SODs. For APX, these variable residues involve binding sites for substrates and cofactors, and might therefore differentially affect the catalytic properties of this enzyme between clades. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between gene expression and protein activity due to high variability in expression between replicates, and little response in their enzymatic activity over the three-day experimental period. CONCLUSIONS: The genus Symbiodinium has a diverse enzymatic antioxidant repertoire that has similarities to prokaryotes, potentially as a result of horizontal gene transfer or events of secondary endosymbiosis. Different degrees of sequence evolution between SODs and peroxidases might be the result of potential selective pressure on the conserved molecular function of SODs as the first line of defence. In contrast, genetic redundancy of hydrogen peroxide scavenging enzymes might permit the observed variations in peroxidase sequences. Our data and successful measurement of antioxidant gene expression in Symbiodinium will serve as basis for further studies of coral health.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/genética , Peroxidasas/genética , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Arrecifes de Coral , Dinoflagelados/enzimología , Variación Genética , Datos de Secuencia Molecular , Peroxidasas/química , Filogenia , Superóxido Dismutasa/química , Simbiosis , Transcriptoma
14.
Environ Microbiol ; 17(10): 3570-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24902979

RESUMEN

Nutritional interactions between corals and symbiotic dinoflagellate algae lie at the heart of the structural foundation of coral reefs. Whilst the genetic diversity of Symbiodinium has attracted particular interest because of its contribution to the sensitivity of corals to environmental changes and bleaching (i.e. disruption of coral-dinoflagellate symbiosis), very little is known about the in hospite metabolic capabilities of different Symbiodinium types. Using a combination of stable isotopic labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), we investigated the ability of the intact symbiosis between the reef-building coral Isopora palifera, and Symbiodinium C or D types, to assimilate dissolved inorganic carbon (via photosynthesis) and nitrogen (as ammonium). Our results indicate that Symbiodinium types from two clades naturally associated with I. palifera possess different metabolic capabilities. The Symbiodinium C type fixed and passed significantly more carbon and nitrogen to its coral host than the D type. This study provides further insights into the metabolic plasticity among different Symbiodinium types in hospite and strengthens the evidence that the more temperature-tolerant Symbiodinium D type may be less metabolically beneficial for its coral host under non-stressful conditions.


Asunto(s)
Antozoos/fisiología , Carbono/metabolismo , Arrecifes de Coral , Dinoflagelados/fisiología , Nitrógeno/metabolismo , Simbiosis/fisiología , Compuestos de Amonio/metabolismo , Animales , Dinoflagelados/química , Dinoflagelados/genética , Variación Genética , Fotosíntesis/genética , Espectrometría de Masa de Ion Secundario , Simbiosis/genética , Temperatura
15.
Artículo en Inglés | MEDLINE | ID: mdl-26310104

RESUMEN

Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching.


Asunto(s)
Antozoos/fisiología , Dinoflagelados/fisiología , Estrés Oxidativo , Pigmentos Biológicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Simbiosis , Animales , Antozoos/crecimiento & desarrollo , Antozoos/parasitología , Antozoos/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Arrecifes de Coral , Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/efectos de la radiación , Calor/efectos adversos , Océano Pacífico , Fotoblanqueo/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Protozoarias/metabolismo , Queensland , Especificidad de la Especie , Estrés Fisiológico/efectos de la radiación , Luz Solar/efectos adversos , Superóxido Dismutasa/metabolismo , Simbiosis/efectos de la radiación
16.
BMC Genomics ; 15: 1052, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25467196

RESUMEN

BACKGROUND: Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 µM). RESULTS: The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. CONCLUSIONS: In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect oxidative stress and apoptotic changes on a molecular level and provide a list of prospective stress biomarkers for both partners in symbiosis. Consequently, our findings are important for understanding and anticipating impacts of anthropogenic global climate change on coral reefs.


Asunto(s)
Antozoos/genética , Regulación de la Expresión Génica , Estrés Fisiológico/genética , Transcripción Genética , Animales , Antozoos/metabolismo , Biología Computacional , Arrecifes de Coral , Metabolismo Energético , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Oxidación-Reducción , Fotosíntesis , Temperatura
17.
Glob Chang Biol ; 20(4): 1043-54, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23966358

RESUMEN

Recent research efforts have demonstrated increased bioerosion rates under experimentally elevated partial pressures of seawater carbon dioxide (pCO2 ) with or without increased temperatures, which may lead to net erosion on coral reefs in the future. However, this conclusion clearly depends on the ability of the investigated bioeroding organisms to survive and grow in the warmer and more acidic future environments, which remains unexplored. The excavating sponge Cliona orientalis Thiele, is a widely distributed bioeroding organism and symbiotic with dinoflagellates of the genus Symbiodinium. Using C. orientalis, an energy budget model was developed to calculate amounts of carbon directed into metabolic maintenance and growth. This model was tested under a range of CO2 emission scenarios (temperature + pCO2 ) appropriate to an Austral early summer. Under a pre-industrial scenario, present day (control) scenario, or B1 future scenario (associated with reducing the rate of CO2 emissions over the next few decades), C. orientalis maintained a positive energy budget, where metabolic demand was likely satisfied by autotrophic carbon provided by Symbiodinium and heterotrophic carbon via filter-feeding, suggesting sustainability. Under B1, C. orientalis likely benefited by a greater supply of photosynthetic products from its symbionts, which increased by up to 56% per unit area, and displayed an improved condition with up to 52% increased surplus carbon available for growth. Under an A1FI future scenario (associated with 'business-as-usual' CO2 emissions) bleached C. orientalis experienced the highest metabolic demand, but carbon acquired was insufficient to maintain the sponge, as indicated by a negative energy budget. These metabolic considerations suggest that previous observations of increased bioerosion under A1FI by C. orientalis may not last through the height of future A1FI summers, and survival of individual sponges may be dependent on the energy reserves (biomass) they have accumulated through the rest of the year.


Asunto(s)
Metabolismo Energético , Poríferos/fisiología , Agua de Mar/química , Animales , Biomasa , Carbono/metabolismo , Dióxido de Carbono , Arrecifes de Coral , Índice Mitótico , Modelos Biológicos , Océanos y Mares , Fotosíntesis , Simbiosis , Temperatura
18.
J Phycol ; 50(6): 1035-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26988785

RESUMEN

Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef-building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up-regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv /Fm ) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv /Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S-transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type-specific temperature responses in Symbiodinium.

19.
Sci Total Environ ; 944: 173916, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866148

RESUMEN

Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.


Asunto(s)
Dinoflagelados , Respuesta al Choque Térmico , Estrés Oxidativo , Simbiosis , Dinoflagelados/fisiología , Respuesta al Choque Térmico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Calor/efectos adversos
20.
Glob Chang Biol ; 19(12): 3581-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23893528

RESUMEN

The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Dinoflagelados/fisiología , Poríferos/fisiología , Agua de Mar/química , Animales , Biomasa , Concentración de Iones de Hidrógeno , Océanos y Mares , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA