Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 67(6): 1009-1022, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38502241

RESUMEN

AIMS/HYPOTHESIS: Adults with type 1 diabetes should perform daily physical activity to help maintain health and fitness, but the influence of daily step counts on continuous glucose monitoring (CGM) metrics are unclear. This analysis used the Type 1 Diabetes Exercise Initiative (T1DEXI) dataset to investigate the effect of daily step count on CGM-based metrics. METHODS: In a 4 week free-living observational study of adults with type 1 diabetes, with available CGM and step count data, we categorised participants into three groups-below (<7000), meeting (7000-10,000) or exceeding (>10,000) the daily step count goal-to determine if step count category influenced CGM metrics, including per cent time in range (TIR: 3.9-10.0 mmol/l), time below range (TBR: <3.9 mmol/l) and time above range (TAR: >10.0 mmol/l). RESULTS: A total of 464 adults with type 1 diabetes (mean±SD age 37±14 years; HbA1c 48.8±8.1 mmol/mol [6.6±0.7%]; 73% female; 45% hybrid closed-loop system, 38% standard insulin pump, 17% multiple daily insulin injections) were included in the study. Between-participant analyses showed that individuals who exceeded the mean daily step count goal over the 4 week period had a similar TIR (75±14%) to those meeting (74±14%) or below (75±16%) the step count goal (p>0.05). In the within-participant comparisons, TIR was higher on days when the step count goal was exceeded or met (both 75±15%) than on days below the step count goal (73±16%; both p<0.001). The TBR was also higher when individuals exceeded the step count goals (3.1%±3.2%) than on days when they met or were below step count goals (difference in means -0.3% [p=0.006] and -0.4% [p=0.001], respectively). The total daily insulin dose was lower on days when step count goals were exceeded (0.52±0.18 U/kg; p<0.001) or were met (0.53±0.18 U/kg; p<0.001) than on days when step counts were below the current recommendation (0.55±0.18 U/kg). Step count had a larger effect on CGM-based metrics in participants with a baseline HbA1c ≥53 mmol/mol (≥7.0%). CONCLUSIONS/INTERPRETATION: Our results suggest that, compared with days with low step counts, days with higher step counts are associated with slight increases in both TIR and TBR, along with small reductions in total daily insulin requirements, in adults living with type 1 diabetes. DATA AVAILABILITY: The data that support the findings reported here are available on the Vivli Platform (ID: T1-DEXI; https://doi.org/10.25934/PR00008428 ).


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus Tipo 1 , Ejercicio Físico , Humanos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Adulto , Femenino , Masculino , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/metabolismo , Glucemia/análisis , Persona de Mediana Edad , Ejercicio Físico/fisiología , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Insulina/uso terapéutico , Insulina/administración & dosificación , Estudios de Cohortes , Monitoreo Continuo de Glucosa
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34345913

RESUMEN

STAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time. To test this, we combine RNA-immunoprecipitation with sequencing (RIP-seq) over four stages of mouse cortical development, generating a comprehensive cargo profile for STAU2. A subset of the cargo was 'stable', present at all stages, and involved in chromosome organization, macromolecule localization, translation and DNA repair. Another subset was 'dynamic', changing with cortical stage, and involved in neurogenesis, cell projection organization, neurite outgrowth, and included cortical layer markers. Notably, the dynamic STAU2 cargo included determinants of IPC versus neuronal fates and genes contributing to abnormal corticogenesis. Knockdown of one STAU2 target, Taf13, previously linked to microcephaly and impaired myelination, reduced oligodendrogenesis in vitro. We conclude that STAU2 contributes to the timing of corticogenesis by binding and delivering complex and temporally regulated RNA cargo into IPCs.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Reparación del ADN/fisiología , Femenino , Inmunoprecipitación/métodos , Masculino , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo , Embarazo
3.
Brain Behav Immun ; 113: 303-316, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516387

RESUMEN

Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Humanos , Masculino , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/metabolismo , Epigenómica , Proteómica , Metabolómica
4.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834278

RESUMEN

The ability to shift circadian phase in vivo has the potential to offer substantial health benefits. However, the blood-brain barrier prevents the absorption of the majority of large and many small molecules, posing a challenge to neurological pharmaceutical development. Motivated by the presence of the circadian molecule KL001, which is capable of causing phase shifts in a circadian oscillator, we investigated the pharmacokinetics of different neurological pharmaceuticals on the dynamics of circadian phase. Specifically, we developed and validated five different transport models that describe drug concentration profiles of a circadian pharmaceutical at the brain level under oral administration and designed a nonlinear model predictive control (MPC)-based framework for phase resetting. Performance of the novel control algorithm based on the identified pharmacokinetic models was demonstrated through simulations of real-world misalignment scenarios due to jet lag. The time to achieve a complete phase reset for 11-h phase delay ranged between 48 and 72 h, while a 5-h phase advance was compensated in 30 to 60 h. This approach provides mechanistic insight into the underlying structure of the circadian oscillatory system and thus leads to a better understanding of the feasibility of therapeutic manipulations of the system.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Barrera Hematoencefálica , Factores de Tiempo
5.
IEEE Trans Control Syst Technol ; 31(5): 2261-2274, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38525198

RESUMEN

We present design and evaluation of closed-loop insulin delivery using zone model predictive control (MPC) featuring an adaptive weighting scheme to address prolonged hyperglycemia due to changes in insulin sensitivity, underdelivery from profile mismatch, and meal composition. In the MPC cost function, the penalty on predicted glucose deviation from the upper zone boundary is weighted by a joint function of predicted glucose rate-of-change (ROC) and insulin-on-board (IOB). The asymmetric weighting gradually increases when glucose ROC and IOB were jointly low, independent of glucose magnitude, to limit hyperglycemia while aggressively reduces for negative glucose ROC to avoid hypoglycemia. The proposed controller was evaluated using two simulation scenarios: an induced resistance scenario and a nominal scenario to highlight the performance over a reference zone MPC with glucose ROC weighting only. The continuous adaption scheme resulted in consistent improvement for the entire glucose range without incurring additional risk of hypoglycemia. For the induced resistance and no feedforward bolus scenario, the percent time in 70-180 mg/dL was higher (53.5% versus 48.9%, p<0.001) with larger improvement in the overnight percent time in tighter glucose range 70-140 mg/dL (70.9% versus 52.9%, p<0.001). The results from extensive simulations, as well as clinical validation in three different outpatient studies demonstrate the utility and safety of the proposed zone MPC.

6.
N Engl J Med ; 381(18): 1707-1717, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31618560

RESUMEN

BACKGROUND: Closed-loop systems that automate insulin delivery may improve glycemic outcomes in patients with type 1 diabetes. METHODS: In this 6-month randomized, multicenter trial, patients with type 1 diabetes were assigned in a 2:1 ratio to receive treatment with a closed-loop system (closed-loop group) or a sensor-augmented pump (control group). The primary outcome was the percentage of time that the blood glucose level was within the target range of 70 to 180 mg per deciliter (3.9 to 10.0 mmol per liter), as measured by continuous glucose monitoring. RESULTS: A total of 168 patients underwent randomization; 112 were assigned to the closed-loop group, and 56 were assigned to the control group. The age range of the patients was 14 to 71 years, and the glycated hemoglobin level ranged from 5.4 to 10.6%. All 168 patients completed the trial. The mean (±SD) percentage of time that the glucose level was within the target range increased in the closed-loop group from 61±17% at baseline to 71±12% during the 6 months and remained unchanged at 59±14% in the control group (mean adjusted difference, 11 percentage points; 95% confidence interval [CI], 9 to 14; P<0.001). The results with regard to the main secondary outcomes (percentage of time that the glucose level was >180 mg per deciliter, mean glucose level, glycated hemoglobin level, and percentage of time that the glucose level was <70 mg per deciliter or <54 mg per deciliter [3.0 mmol per liter]) all met the prespecified hierarchical criterion for significance, favoring the closed-loop system. The mean difference (closed loop minus control) in the percentage of time that the blood glucose level was lower than 70 mg per deciliter was -0.88 percentage points (95% CI, -1.19 to -0.57; P<0.001). The mean adjusted difference in glycated hemoglobin level after 6 months was -0.33 percentage points (95% CI, -0.53 to -0.13; P = 0.001). In the closed-loop group, the median percentage of time that the system was in closed-loop mode was 90% over 6 months. No serious hypoglycemic events occurred in either group; one episode of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this 6-month trial involving patients with type 1 diabetes, the use of a closed-loop system was associated with a greater percentage of time spent in a target glycemic range than the use of a sensor-augmented insulin pump. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; iDCL ClinicalTrials.gov number, NCT03563313.).


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Adolescente , Adulto , Anciano , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diseño de Equipo , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Sistemas de Infusión de Insulina/efectos adversos , Masculino , Persona de Mediana Edad , Páncreas Artificial/efectos adversos , Adulto Joven
7.
Anal Chem ; 94(26): 9217-9225, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35715001

RESUMEN

Decentralized sensing of analytes in remote locations is today a reality. However, the number of measurable analytes remains limited, mainly due to the requirement for time-consuming successive standard additions calibration used to address matrix effects and resulting in greatly delayed results, along with more complex and costly operation. This is particularly challenging in commonly used immunoassays of key biomarkers that typically require from 60 to 90 min for quantitation based on two standard additions, hence hindering their implementation for rapid and routine diagnostic applications, such as decentralized point-of-care (POC) insulin testing. In this work we have developed and demonstrated the theoretical framework for establishing a universal slope for direct calibration-free POC insulin immunoassays in serum samples using an electrochemical biosensor (developed originally for extended calibration by standard additions). The universal slope is presented as an averaged slope constant, relying on 68 standard additions-based insulin determinations in human sera. This new quantitative analysis approach offers reliable sample measurement without successive standard additions, leading to a dramatically simplified and faster assay (30 min vs 90 min when using 2 standard additions) and greatly reduced costs, without compromising the analytical performance while significantly reducing the analyses costs. The substantial improvements associated with the new universal slope concept have been demonstrated successfully for calibration-free measurements of serum insulin in 30 samples from individuals with type 1 diabetes using meticulous statistical analysis, supporting the prospects of applying this immunoassay protocol to routine decentralized POC insulin testing.


Asunto(s)
Técnicas Biosensibles , Insulina , Biomarcadores/análisis , Humanos , Inmunoensayo/métodos , Pruebas en el Punto de Atención
8.
Anal Chem ; 94(23): 8335-8345, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35653647

RESUMEN

The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.


Asunto(s)
Monitoreo de Drogas , Agujas , Animales , Biomarcadores/análisis , Monitoreo de Drogas/métodos , Líquido Extracelular/química , Oligonucleótidos/análisis
9.
Mol Psychiatry ; 26(8): 4300-4314, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33339956

RESUMEN

Post-traumatic stress disorder (PTSD) is a heterogeneous condition evidenced by the absence of objective physiological measurements applicable to all who meet the criteria for the disorder as well as divergent responses to treatments. This study capitalized on biological diversity observed within the PTSD group observed following epigenome-wide analysis of a well-characterized Discovery cohort (N = 166) consisting of 83 male combat exposed veterans with PTSD, and 83 combat veterans without PTSD in order to identify patterns that might distinguish subtypes. Computational analysis of DNA methylation (DNAm) profiles identified two PTSD biotypes within the PTSD+ group, G1 and G2, associated with 34 clinical features that are associated with PTSD and PTSD comorbidities. The G2 biotype was associated with an increased PTSD risk and had higher polygenic risk scores and a greater methylation compared to the G1 biotype and healthy controls. The findings were validated at a 3-year follow-up (N = 59) of the same individuals as well as in two independent, veteran cohorts (N = 54 and N = 38), and an active duty cohort (N = 133). In some cases, for example Dopamine-PKA-CREB and GABA-PKC-CREB signaling pathways, the biotypes were oppositely dysregulated, suggesting that the biotypes were not simply a function of a dimensional relationship with symptom severity, but may represent distinct biological risk profiles underpinning PTSD. The identification of two novel distinct epigenetic biotypes for PTSD may have future utility in understanding biological and clinical heterogeneity in PTSD and potential applications in risk assessment for active duty military personnel under non-clinician-administered settings, and improvement of PTSD diagnostic markers.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Epigénesis Genética/genética , Epigenoma , Humanos , Masculino , Trastornos por Estrés Postraumático/genética
10.
Mol Psychiatry ; 26(9): 5011-5022, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32488126

RESUMEN

Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well understood. This prospective longitudinal naturalistic cohort study-the Fort Campbell Cohort study-examined the value of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-duty Army personnel (N = 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted provisional PTSD diagnosis 90-180 days post deployment (random forest: AUC = 0.78, 95% CI = 0.67-0.89, sensitivity = 0.78, specificity = 0.71; SVM: AUC = 0.88, 95% CI = 0.78-0.98, sensitivity = 0.89, specificity = 0.79) and longitudinal PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC = 0.85, 95% CI = 0.75-0.96, sensitivity = 0.88, specificity = 0.69; SVM: AUC = 0.87, 95% CI = 0.79-0.96, sensitivity = 0.80, specificity = 0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to mitigate the risk for deployment-related PTSD.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Afganistán , Estudios de Cohortes , Humanos , Aprendizaje Automático , Estudios Prospectivos , Factores de Riesgo , Calidad del Sueño
11.
Mol Psychiatry ; 26(9): 4999-5009, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32382136

RESUMEN

DNA methylation patterns at specific cytosine-phosphate-guanine (CpG) sites predictably change with age and can be used to derive "epigenetic age", an indicator of biological age, as opposed to merely chronological age. A relatively new estimator, called "DNAm GrimAge", is notable for its superior predictive ability in older populations regarding numerous age-related metrics like time-to-death, time-to-coronary heart disease, and time-to-cancer. PTSD is associated with premature mortality and frequently has comorbid physical illnesses suggestive of accelerated biological aging. This is the first study to assess DNAm GrimAge in PTSD patients. We investigated the acceleration of GrimAge relative to chronological age, denoted "AgeAccelGrim" in combat trauma-exposed male veterans with and without PTSD using cross-sectional and longitudinal data from two independent well-characterized veteran cohorts. In both cohorts, AgeAccelGrim was significantly higher in the PTSD group compared to the control group (N = 162, 1.26 vs -0.57, p = 0.001 and N = 53, 0.93 vs -1.60 Years, p = 0.008), suggesting accelerated biological aging in both cohorts with PTSD. In 3-year follow-up study of individuals initially diagnosed with PTSD (N = 26), changes in PTSD symptom severity were correlated with AgeAccelGrim changes (r = 0.39, p = 0.049). In addition, the loss of CD28 cell surface markers on CD8 + T cells, an indicator of T-cell senescence/exhaustion that is associated with biological aging, was positively correlated with AgeAccelGrim, suggesting an immunological contribution to the accelerated biological aging. Overall, our findings delineate cellular correlates of biological aging in combat-related PTSD, which may help explain the increased medical morbidity and mortality seen in this disease.


Asunto(s)
Metilación de ADN , Trastornos por Estrés Postraumático , Anciano , Envejecimiento/genética , Estudios Transversales , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Estudios de Seguimiento , Humanos , Masculino , Trastornos por Estrés Postraumático/genética
12.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293361

RESUMEN

Post-traumatic stress disorder (PTSD) is a highly debilitating psychiatric disorder that can be triggered by exposure to extreme trauma. Even if PTSD is primarily a psychiatric condition, it is also characterized by adverse somatic comorbidities. One illness commonly co-occurring with PTSD is Metabolic syndrome (MetS), which is defined by a set of health risk/resilience factors including obesity, elevated blood pressure, lower high-density lipoprotein cholesterol, higher low-density lipoprotein cholesterol, higher triglycerides, higher fasting blood glucose and insulin resistance. Here, phenotypic association between PTSD and components of MetS are tested on a military veteran cohort comprising chronic PTSD presentation (n = 310, 47% cases, 83% male). Consistent with previous observations, we found significant phenotypic correlation between the various components of MetS and PTSD severity scores. To examine if this observed symptom correlations stem from a shared genetic background, we conducted genetic correlation analysis using summary statistics data from large-scale genetic studies. Our results show robust positive genetic correlation between PTSD and MetS (rg[SE] = 0.33 [0.056], p = 4.74E-09), and obesity-related components of MetS (rg = 0.25, SE = 0.05, p = 6.4E-08). Prioritizing genomic regions with larger local genetic correlation implicate three significant loci. Overall, these findings show significant genetic overlap between PTSD and MetS, which may in part account for the markedly increased occurrence of MetS among PTSD patients.


Asunto(s)
Síndrome Metabólico , Trastornos por Estrés Postraumático , Humanos , Masculino , Femenino , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Prevalencia , Glucemia , Obesidad , Lipoproteínas HDL , Lipoproteínas LDL , Triglicéridos , Colesterol
13.
Mol Psychiatry ; 25(12): 3337-3349, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501510

RESUMEN

Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Biomarcadores , Encéfalo , Humanos , Masculino , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/genética
14.
PLoS Comput Biol ; 16(11): e1008459, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226977

RESUMEN

The molecular circadian clock is driven by interlocked transcriptional-translational feedback loops, producing oscillations in the expressions of genes and proteins to coordinate the timing of biological processes throughout the body. Modeling this system gives insight into the underlying processes driving oscillations in an activator-repressor architecture and allows us to make predictions about how to manipulate these oscillations. The knockdown or upregulation of different cellular components using small molecules can disrupt these rhythms, causing a phase shift, and we aim to determine the dosing of such molecules with a model-based control strategy. Mathematical models allow us to predict the phase response of the circadian clock to these interventions and time them appropriately but only if the model has enough physiological detail to describe these responses while maintaining enough simplicity for online optimization. We build a control-relevant, physiologically-based model of the two main feedback loops of the mammalian molecular clock, which provides sufficient detail to consider multi-input control. Our model captures experimentally observed peak to trough ratios, relative abundances, and phase differences in the model species, and we independently validate this model by showing that the in silico model reproduces much of the behavior that is observed in vitro under genetic knockout conditions. Because our model produces valid phase responses, it can be used in a model predictive control algorithm to determine inputs to shift phase. Our model allows us to consider multi-input control through small molecules that act on both feedback loops, and we find that changes to the parameters of the negative feedback loop are much stronger inputs for shifting phase. The strongest inputs predicted by this model provide targets for new experimental small molecules and suggest that the function of the positive feedback loop is to stabilize the oscillations while linking the circadian system to other clock-controlled processes.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Biológicos , Algoritmos , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Biología Computacional , Simulación por Computador , Evolución Molecular , Retroalimentación Fisiológica , Técnicas de Inactivación de Genes , Humanos , Mamíferos/genética , Mamíferos/fisiología , Conceptos Matemáticos , Biosíntesis de Proteínas , Transcripción Genética
15.
J Pineal Res ; 71(1): e12745, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34050968

RESUMEN

The time of dim light melatonin onset (DLMO) is the gold standard for circadian phase assessment in humans, but collection of samples for DLMO is time and resource-intensive. Numerous studies have attempted to estimate circadian phase from actigraphy data, but most of these studies have involved individuals on controlled and stable sleep-wake schedules, with mean errors reported between 0.5 and 1 hour. We found that such algorithms are less successful in estimating DLMO in a population of college students with more irregular schedules: Mean errors in estimating the time of DLMO are approximately 1.5-1.6 hours. We reframed the problem as a classification problem and estimated whether an individual's current phase was before or after DLMO. Using a neural network, we found high classification accuracy of about 90%, which decreased the mean error in DLMO estimation-identifying the time at which the switch in classification occurs-to approximately 1.3 hours. To test whether this classification approach was valid when activity and circadian rhythms are decoupled, we applied the same neural network to data from inpatient forced desynchrony studies in which participants are scheduled to sleep and wake at all circadian phases (rather than their habitual schedules). In participants on forced desynchrony protocols, overall classification accuracy dropped to 55%-65% with a range of 20%-80% for a given day; this accuracy was highly dependent upon the phase angle (ie, time) between DLMO and sleep onset, with the highest accuracy at phase angles associated with nighttime sleep. Circadian patterns in activity, therefore, should be included when developing and testing actigraphy-based approaches to circadian phase estimation. Our novel algorithm may be a promising approach for estimating the onset of melatonin in some conditions and could be generalized to other hormones.


Asunto(s)
Actigrafía/métodos , Ritmo Circadiano/fisiología , Melatonina/biosíntesis , Redes Neurales de la Computación , Fotometría/métodos , Adulto , Femenino , Humanos , Masculino
16.
Proc Natl Acad Sci U S A ; 115(45): 11643-11648, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348778

RESUMEN

The circadian clock orchestrates 24-h rhythms in physiology in most living organisms. At the molecular level, the dogma is that circadian oscillations are based on a negative transcriptional feedback loop. Recent studies found the NAD+-dependent histone deacetylase, SIRT1, directly regulates acetylation status of clock components and influences circadian amplitude in cells. While Nakahata et al. [Nakahata Y, Kaluzova M (2008) Cell 134:329-340] reported that loss of SIRT1 increases amplitude through BMAL1 acetylation, Asher et al. [Asher G, Gatfield D (2008) Cell 134:317-328] reported that loss of SIRT1 decreases amplitude through an increase in acetylated PER2. To address this SIRT1 paradox, we developed a circadian enzymatic model. Predictions from this model and experimental validation strongly align with the findings of Asher et al., with PER2 as the primary target of SIRT1. Further, the model suggested SIRT1 influences BMAL1 expression through actions on PGC1α. We validated this finding experimentally. Thus, our computational and experimental approaches suggest SIRT1 positively regulates clock function through actions on PER2 and PGC1α.


Asunto(s)
Relojes Circadianos/genética , Retroalimentación Fisiológica , Modelos Biológicos , Proteínas Circadianas Period/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Sirtuina 1/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Línea Celular , Simulación por Computador , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Proteínas Circadianas Period/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo
17.
Am J Physiol Endocrinol Metab ; 319(1): E48-E66, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315214

RESUMEN

Although glucocorticoid resistance contributes to increased inflammation, individuals with posttraumatic stress disorder (PTSD) exhibit increased glucocorticoid receptor (GR) sensitivity along with increased inflammation. It is not clear how inflammation coexists with a hyperresponsive hypothalamic-pituitary-adrenal (HPA) axis. To understand this better, we developed and analyzed an integrated mathematical model for the HPA axis and the immune system. We performed mathematical simulations for a dexamethasone (DEX) suppression test and IC50-dexamethasone for cytokine suppression by varying model parameters. The model analysis suggests that increasing the steepness of the dose-response curve for GR activity may reduce anti-inflammatory effects of GRs at the ambient glucocorticoid levels, thereby increasing proinflammatory response. The adaptive response of proinflammatory cytokine-mediated stimulatory effects on the HPA axis is reduced due to dominance of the GR-mediated negative feedback on the HPA axis. To verify these hypotheses, we analyzed the clinical data on neuroendocrine variables and cytokines obtained from war-zone veterans with and without PTSD. We observed significant group differences for cortisol and ACTH suppression tests, proinflammatory cytokines TNFα and IL6, high-sensitivity C-reactive protein, promoter methylation of GR gene, and IC50-DEX for lysozyme suppression. Causal inference modeling revealed significant associations between cortisol suppression and post-DEX cortisol decline, promoter methylation of human GR gene exon 1F (NR3C1-1F), IC50-DEX, and proinflammatory cytokines. We noted significant mediation effects of NR3C1-1F promoter methylation on inflammatory cytokines through changes in GR sensitivity. Our findings suggest that increased GR sensitivity may contribute to increased inflammation; therefore, interventions to restore GR sensitivity may normalize inflammation in PTSD.


Asunto(s)
Citocinas/inmunología , Glucocorticoides/inmunología , Receptores de Glucocorticoides/inmunología , Trastornos por Estrés Postraumático/inmunología , Hormona Adrenocorticotrópica/inmunología , Hormona Adrenocorticotrópica/metabolismo , Adulto , Campaña Afgana 2001- , Proteína C-Reactiva/inmunología , Estudios de Casos y Controles , Ritmo Circadiano , Metilación de ADN , Dexametasona , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/inmunología , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación , Concentración 50 Inhibidora , Interleucina-6/inmunología , Guerra de Irak 2003-2011 , Masculino , Modelos Teóricos , Pruebas de Función Adreno-Hipofisaria , Sistema Hipófiso-Suprarrenal/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Regiones Promotoras Genéticas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Veteranos
18.
IEEE Trans Control Syst Technol ; 28(6): 2600-2607, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33762804

RESUMEN

While artificial pancreas (AP) systems are expected to improve the quality of life among people with type 1 diabetes mellitus (T1DM), the design of convenient systems that optimize the user experience, especially for those with active lifestyles, such as children and adolescents, still remains an open research question. In this work, we introduce an embeddable design and implementation of model predictive control (MPC) of AP systems for people with T1DM that significantly reduces the weight and on-body footprint of the AP system. The embeddable controller is based on a zone MPC that has been evaluated in multiple clinical studies. The proposed embedded zone MPC features a simpler design of the periodic safe zone in the cost function and the utilization of state-of-the-art alternating minimization algorithms for solving the convex programming problems inherent to MPC with linear models subject to convex constraints. Off-line closed-loop data generated by the FDA-accepted UVA/Padova simulator is used to select an optimization algorithm and corresponding tuning parameters. Through hardware-in-the-loop in silico results on a limited-resource Arduino Zero (Feather M0) platform, we demonstrate the potential of the proposed embedded MPC. In spite of resource limitations, our embedded zone MPC manages to achieve comparable performance of that of the full-version zone MPC implemented in a 64-bit desktop for scenarios with/without meal-disturbance compensations. Metrics for performance comparison included median percent time in the euglycemic ([70, 180] mg/dL range) of 84.3% vs. 83.1% for announced meals, with an equivalence test yielding p = 0.0013 and 66.2% vs. 66.0% for unannounced meals with p = 0.0028.

19.
J Neurosci ; 38(6): 1326-1334, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29054877

RESUMEN

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.


Asunto(s)
Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Femenino , Antagonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiología , Embarazo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/biosíntesis , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/crecimiento & desarrollo , Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/fisiología
20.
Am J Physiol Endocrinol Metab ; 317(5): E879-E898, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31322414

RESUMEN

Posttraumatic stress disorder (PTSD) is associated with neuroendocrine alterations and metabolic abnormalities; however, how metabolism is affected by neuroendocrine disturbances is unclear. The data from combat-exposed veterans with PTSD show increased glycolysis to lactate flux, reduced TCA cycle flux, impaired amino acid and lipid metabolism, insulin resistance, inflammation, and hypersensitive hypothalamic-pituitary-adrenal (HPA) axis. To analyze whether the co-occurrence of multiple metabolic abnormalities is independent or arises from an underlying regulatory defect, we employed a systems biological approach using an integrated mathematical model and multiomic analysis. The models for hepatic metabolism, HPA axis, inflammation, and regulatory signaling were integrated to perform metabolic control analysis (MCA) with respect to the observations from our clinical data. We combined the metabolomics, neuroendocrine, clinical laboratory, and cytokine data from combat-exposed veterans with and without PTSD to characterize the differences in regulatory effects. MCA revealed mechanistic association of the HPA axis and inflammation with metabolic dysfunction consistent with PTSD. This was supported by the data using correlational and causal analysis that revealed significant associations between cortisol suppression, high-sensitivity C-reactive protein, homeostatic model assessment of insulin resistance, γ-glutamyltransferase, hypoxanthine, and several metabolites. Causal mediation analysis indicates that the effects of enhanced glucocorticoid receptor sensitivity (GRS) on glycolytic pathway, gluconeogenic and branched-chain amino acids, triglycerides, and hepatic function are jointly mediated by inflammation, insulin resistance, oxidative stress, and energy deficit. Our analysis suggests that the interventions to normalize GRS and inflammation may help to manage features of metabolic dysfunction in PTSD.


Asunto(s)
Enfermedades Metabólicas/metabolismo , Receptores de Glucocorticoides/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Adulto , Citocinas/metabolismo , Glucólisis , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hígado/metabolismo , Masculino , Metabolómica , Persona de Mediana Edad , Modelos Teóricos , Sistemas Neurosecretores/metabolismo , Biología de Sistemas , Veteranos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA