RESUMEN
Bats are potential natural hosts of Encephalomyocarditis virus (EMCV) and Japanese encephalitis virus (JEV). Bats appear to have some unique features in their innate immune system that inhibit viral replication causing limited clinical symptoms, and thus, contributing to the virus spill over to humans. Here, kidney epithelial cell lines derived from four bat species (Pteropus dasymallus, Rousettus leschenaultii, Rhinolophus ferrumequinum, and Miniopterus fuliginosus) and two non-bat species (Homo sapiens and Mesocricetus auratus) were infected with EMCV and JEV. The replication of EMCV and JEV was lower in the bat cell lines derived from R. leschenaultii, R. ferrumequinum, and M. fuliginosus with a higher expression level of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferon-beta (IFN-ß) than that in the non-bat cell lines and a bat cell line derived from P. dasymallus. The knockdown of TLR3, RIG-I, and MDA5 in Rhinolophus bat cell line using antisense RNA oligonucleotide led to decrease IFN-ß expression and increased viral replication. These results suggest that TLR3, RIG-I, and MDA5 are important for antiviral response against EMCV and JEV in Rhinolophus bats.
Asunto(s)
Infecciones por Cardiovirus/veterinaria , Quirópteros/virología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/veterinaria , Virus de la Encefalomiocarditis/inmunología , Interferón beta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Enfermedades de las Aves/inmunología , Enfermedades de las Aves/virología , Infecciones por Cardiovirus/inmunología , Línea Celular , Quirópteros/inmunología , Encefalitis Japonesa/inmunología , Humanos , Inmunidad InnataRESUMEN
Adenosine 5'-triphosphate (ATP), the major energy currency of the cell, is involved in many cellular processes, including the viral life cycle, and can be used as an indicator of early signs of cytopathic effect (CPE). In this study, we demonstrated that CPE can be analyzed using an FRET-based ATP probe named ATP indicator based on Epsilon subunit for Analytical Measurements (ATeam). The results revealed that as early as 3 hr, the virus infected cells showed a significantly different Venus/cyan fluorescent protein (CFP) ratio compared to the mock-infected cells. The ATeam technology is therefore useful to determine the early signs of ATP-based CPE as early as 3 hr without morphology-based CPE by light microscopy, and enables high throughput determination of the presence of microorganisms in neglected samples stored in laboratories.
Asunto(s)
Adenosina Trifosfato/análisis , Efecto Citopatogénico Viral , Transferencia Resonante de Energía de Fluorescencia/métodos , Virus/metabolismo , Animales , Técnicas Biosensibles , Línea Celular , Proteínas Fluorescentes Verdes , Humanos , Mamíferos , Microscopía Fluorescente , VirosisRESUMEN
Bats are reservoir hosts of many zoonotic viruses and identification of viruses that they carry is important. This study aimed to use high throughput screening to identify the viruses in fecal guano of Taiwanese insectivorous bats caves in order to obtain more information on bat-derived pathogenic viruses in East Asia. Guano samples were collected from two caves in Taiwan, pooled, and then subjected to Multiplex PCR-based next generation sequencing for viral identification. Subsequently, encephalomyocarditis virus (EMCV) sequence was detected and confirmed by reverse transcription PCR. EMCV is considered as rodent virus and thus, animal species identification through cytochrome oxidase I (COI) barcoding was further done to identify the viral source. Finally, determination of distribution and verification of the presence of EMCV in guano obtained from Japanese and South Korean caves was also done. We concluded that the guano collected was not contaminated with the excrement of rodents which were reported and presumed to live in Taiwan. Also, EMCV genome fragments were found in guanos of Japanese and South Korean caves. It is possible that the eastern bent-wing bat (Miniopterus fuliginosus) is one of the natural hosts of EMCV in East Asia.
Asunto(s)
Enfermedades de los Animales/virología , Infecciones por Cardiovirus/veterinaria , Quirópteros/virología , Reservorios de Enfermedades/virología , Virus de la Encefalomiocarditis/clasificación , Virus de la Encefalomiocarditis/genética , Animales , Asia Oriental , Variación Genética , Genoma Viral , Análisis de Secuencia de ADNRESUMEN
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8-17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior.