Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Gene Med ; 26(7): e3711, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967638

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Perfilación de la Expresión Génica , Mutación , Transcriptoma , Humanos , Esclerosis Amiotrófica Lateral/genética , Femenino , Masculino , Persona de Mediana Edad , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Leucocitos Mononucleares/metabolismo , Superóxido Dismutasa-1/genética , Línea Celular , Anciano , Regulación de la Expresión Génica , Proteínas de Unión al ADN , Proteína FUS de Unión a ARN
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473944

RESUMEN

Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Inflamación/tratamiento farmacológico
3.
Clin Immunol ; 249: 109299, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963449

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Metilación de ADN , Expresión Génica , Índice de Severidad de la Enfermedad , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Interferones/genética , Mutación , Biomarcadores , Estudios de Casos y Controles
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269723

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients' stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430958

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Humanos , Especies Reactivas de Oxígeno/metabolismo , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
6.
Brain Behav Immun ; 97: 13-21, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34022369

RESUMEN

SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to characterize the transcriptional signature. Our data showed that SARS-CoV-2 could be detected by ddPCR in 8 (88%) of 9 examined samples while by qRT-PCR in one case only (11%). Transcriptomic analysis revealed that 11 genes (10 mRNAs and 1 lncRNA) were differential expressed when frontal cortex of COVID-19 patients were compared to controls. These genes fall into categories including hypoxia, hemoglobin-stabilizing protein, hydrogen peroxide processes. This work demonstrated that the quantity of viral RNA in frontal cortex is minimal and it can be detected only with a very sensitive method (ddPCR). Thus, it is likely that SARS-CoV-2 does not actively infect and replicate in the brain; its topography within encephalic structures remains uncertain. Moreover, COVID-19 may have a role on brain gene expression, since we observed an important downregulation of genes associated to hypoxia inducting factor system (HIF) that may inhibit the capacity of defense system during infection and oxigen deprivation, showing that hypoxia, well known multi organ condition associated to COVID-19, also marked the brain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Lóbulo Frontal , Humanos , Transcriptoma , Secuenciación del Exoma
7.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916661

RESUMEN

A new coronavirus (SARS-CoV-2) caused the current coronavirus disease (Covid-19) epidemic. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used as the gold standard for clinical detection of SARS-CoV-2. Under ideal conditions, RT-qPCR Covid-19 assays have analytical sensitivity and specificity greater than 95%. However, when the sample panel is enlarged including asymptomatic individuals, the sensitivity decreases and false negatives are reported. Moreover, RT-qPCR requires up to 3-6 h with most of the time involved in RNA extraction from swab samples. We introduce CovidArray, a microarray-based assay, to detect SARS-CoV-2 markers N1 and N2 in the nasopharyngeal swabs. The method is based on solid-phase hybridization of fluorescently-labeled amplicons upon RNA extraction and reverse transcription. This approach combines the physical-optical properties of the silicon substrate with the surface chemistry used to coat the substrate to obtain a diagnostic tool of great sensitivity. Furthermore, we used an innovative approach, RNAGEM, to extract and purify viral RNA in less than 15 min. We correctly assigned 12 nasopharyngeal swabs, previously analyzed by RT-qPCR. Thanks to the CovidArray sensitivity we were able to identify a false-negative sample. CovidArray is the first DNA microarray-based assay to detect viral genes in the swabs. Its high sensitivity and the innovative viral RNA extraction by RNAGEM allows the reduction of both the amount of false-negative results and the total analysis time to about 2 h.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
8.
Front Endocrinol (Lausanne) ; 14: 1152237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998476

RESUMEN

Introduction: Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. Materials and methods: We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. Results: Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. Conclusion: These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , ADN Mitocondrial/genética , Mitocondrias/genética , Metilación de ADN
9.
Data Brief ; 38: 107432, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34604485

RESUMEN

Since the association of SARS-Cov-2 infection with Nervous System (NS) manifestations, we performed RNA-sequencing analysis in Frontal Cortex of COVID-19 positive or negative individuals and affected or not by Dementia individuals. We examined gene expression differences in individuals with COVID-19 and Dementia compared to Dementia only patients by collecting transcript counts in each sample and performing Differential Expression analysis. We found eleven genes satisfying our significance criteria, all of them being protein coding genes. These data are suitable for integration with supplemental samples and for analysis according to different individuals' classification. Also, differential expression evaluation may be implemented with other scientific purposes, such as research of unannotated genes, mRNA splicing and genes isoforms. The analysis of Differential Expressed genes in COVID-19 positive patients compared to non-COVID-19 patients is published in: S. Gagliardi, E.T. Poloni, C. Pandini, M. Garofalo, F. Dragoni, V. Medici, A. Davin, S.D. Visonà, M. Moretti, D. Sproviero, O. Pansarasa, A. Guaita, M. Ceroni, L. Tronconi, C. Cereda, Detection of SARS-CoV-2 genome and whole transcriptome sequencing in frontal cortex of COVID-19 patients., Brain. Behav. Immun. (2021). https://doi.org/10.1016/j.bbi.2021.05.012.

10.
Front Immunol ; 12: 672952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981319

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a rare disorder characterized by neurological and immunological signs. In this study we have described a child with a phenotype consistent with AGS carrying a novel compound heterozygous mutation in RNASEH2B gene. Next Generation Sequencing revealed two heterozygous variants in RNASEH2B gene. We also highlighted a reduction of RNase H2B transcript and protein levels in all the family members. Lower protein levels of RNase H2A have been observed in all the members of the family as well, whereas a deep depletion of RNase H2C has only been identified in the affected child. The structural analysis showed that both mutations remove many intramolecular contacts, possibly introducing conformational rearrangements with a decrease of the stability of RNase H2B and strongly destabilizing the RNase H2 complex. Taken together, these results highlight the importance of an integrated diagnostic approach which takes into consideration clinical, genetic, and molecular analyses.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética , Humanos , Lactante , Masculino , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA