Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 499(7457): 178-83, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23823726

RESUMEN

We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.


Asunto(s)
Redes Reguladoras de Genes , Hipoxia/genética , Redes y Vías Metabólicas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Genómica , Hipoxia/metabolismo , Metabolismo de los Lípidos/genética , Modelos Biológicos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Oxígeno/farmacología , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología
2.
PLoS Genet ; 7(3): e1001354, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21483810

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me) is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac) has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs) Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC) Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP), we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3), a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS), which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me).


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Eucromatina/genética , Eucromatina/metabolismo , Regulación Enzimológica de la Expresión Génica , Redes Reguladoras de Genes/genética , Heterocromatina/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Lisina/genética , Metilación , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
3.
J Proteome Res ; 9(6): 3270-9, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20329787

RESUMEN

Shotgun proteomics separates peptides by chromatography and precursor mass over charge, yet in almost any large data set of a complex sample, there will be some tandem mass spectra containing more than one peptide. These mixture spectra contain two coeluting peptides with close precursor mass over charge, and sometimes contain exact isomers, often the same peptide with the same modification in two different positions. Isomers present a problem when the position of the modification is of special interest, as in histone modification studies or "oxidative footprinting" studies of protein structure. Here we give algorithms for identifying isomeric mixtures, and present results on two different histones and four oxidative footprinting targets. Five of the six targets contain at least one peptide that appears in isomeric mixtures, but in none of the cases are mixtures so prevalent that they greatly impact the overall identification rate.


Asunto(s)
Fragmentos de Péptidos/química , Mapeo Peptídico/métodos , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Espectrometría de Masas en Tándem/métodos , Acetilación , Algoritmos , Secuencia de Aminoácidos , Animales , Bovinos , Pollos , Histonas/química , Histonas/metabolismo , Caballos , Isomerismo , Datos de Secuencia Molecular , Muramidasa/química , Muramidasa/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Fragmentos de Péptidos/metabolismo , Porinas/química , Porinas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/química , Ubiquitina/metabolismo
4.
Anal Chem ; 81(15): 6300-9, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20337398

RESUMEN

A novel method to improve the detection of protein ions using a linear ion trap mass spectrometer is presented. A scan function combining charge separation with segmented transmission of multiply charged ions was developed to enhance the sensitivity and resolution of the linear ion trap for the nanoLC-MS analysis of intact proteins. The analytical benefits of the present method are particularly apparent in protein analyses, where the increased proportion of multiply charged ions can exacerbate space-charge effects and compromise the dynamic range of the linear ion trap instrument. The enhanced ion storage and charge separation capabilities of our targeted and enhanced multiply charged scan mode provided a 4-fold increase in signal-to-noise and 5-fold increase in resolution, thus enabling the detection of closely related protein isoforms. The application of this method is demonstrated for low femtomole detection of protein standards and nuclear extracts enriched in histone proteins. The enhanced resolution of this scan mode also enabled us to monitor subtle changes in the methylation of a subpopulation of histone H3 that occurs in chicken DT40 cells lacking specific methyltransferase activity. The extent of the fold change and PTM site localization was performed using predictive software tools and targeted multiple reaction monitoring analysis of histone peptides. Monomethylation of Lys 79 in histone H3 (H3K79me1) was down regulated by 240-fold in methyltransferase deficient cells.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/análisis , Histonas/análisis , Lisina/análisis , Espectrometría de Masas , Animales , Células Cultivadas , Pollos , Cromatografía Líquida de Alta Presión , Histona Metiltransferasas , Metilación , Nanotecnología , Procesamiento Proteico-Postraduccional
5.
Anal Chem ; 80(17): 6698-707, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18671409

RESUMEN

A two-pronged approach using specialized peptide detection and clustering tools was developed to profile changes in histone post-translational modifications (PTMs). The extent and nature of modification was inferred by comparing the mass profiles of intact core histones from nano LC-MS experiments. Histones displaying changes in their intact mass profiles were fractionated, derivatized with propionic anhydride, and digested with trypsin prior to nano LC-MS analyses. Our methodology was validated by comparing the abundance of histone PTMs in wild type and mutant strains of Saccharomyces cerevisiae lacking the histone acetyltransferase Rtt109 and a nucleosome assembly factor known as Asf1. Both Rtt109 and Asf1 were previously found to be essential for acetylation of histone H3 lysine 56 (H3K56ac), a modification that plays an important role in the response to genotoxic agents that interfere with DNA replication. The generation of ion abundance distribution plots enabled a rapid and comprehensive profiling of histone peptides. Our analytical methodology and data mining approach showed that most common histone PTMs were unaffected in mutant yeast cells lacking Rtt109 and Asf1. However, a subpopulation representing 17% of all H3 histones in wild type cells showed an acetylated K56 residue that was significantly reduced in both mutant strains. Our generic strategy for histone PTM profiling can be applied to assess global changes in histone PTMs across sample sets and to establish structure-function relationships.


Asunto(s)
Histonas/química , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Secuencia de Aminoácidos , Cromatografía Liquida , Regulación de la Expresión Génica , Modelos Lineales , Espectrometría de Masas , Nanotecnología , Péptidos/metabolismo , Proteómica , Reproducibilidad de los Resultados , Coloración y Etiquetado , Relación Estructura-Actividad , Tripsina/metabolismo
6.
PLoS One ; 6(2): e14714, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21383990

RESUMEN

BACKGROUND: Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line. CONCLUSIONS/SIGNIFICANCE: Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Daño del ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Metiltransferasas/fisiología , Animales , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Análisis por Micromatrices , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteína 1 de Unión al Supresor Tumoral P53
7.
Structure ; 19(2): 221-31, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21256037

RESUMEN

Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27, and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ∼12 Å diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3-H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones before deposition.


Asunto(s)
Acetilcoenzima A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , Expresión Génica , Inestabilidad Genómica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/genética , Humanos , Lisina/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
8.
Nat Med ; 16(7): 774-80, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20601951

RESUMEN

Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/enzimología , Candida albicans/patogenicidad , Candidiasis/enzimología , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Acetilación , Animales , Candida albicans/efectos de los fármacos , Candidiasis/genética , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Proteínas Fúngicas/genética , Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Ratones , Niacinamida/farmacología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA