Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(7): 1566-75, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26073943

RESUMEN

The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.


Asunto(s)
Miocitos Cardíacos/citología , Células Endoteliales/citología , Corazón/fisiología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Mesodermo/citología , Miocardio/citología , Poliploidía , Datación Radiométrica
2.
Cell ; 156(5): 1072-83, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24561062

RESUMEN

In most mammals, neurons are added throughout life in the hippocampus and olfactory bulb. One area where neuroblasts that give rise to adult-born neurons are generated is the lateral ventricle wall of the brain. We show, using histological and carbon-14 dating approaches, that in adult humans new neurons integrate in the striatum, which is adjacent to this neurogenic niche. The neuronal turnover in the striatum appears restricted to interneurons, and postnatally generated striatal neurons are preferentially depleted in patients with Huntington's disease. Our findings demonstrate a unique pattern of neurogenesis in the adult human brain.


Asunto(s)
Ganglios Basales/citología , Neurogénesis , Neuronas/citología , Adulto , Animales , Ganglios Basales/patología , Ganglios Basales/fisiología , Encéfalo/citología , Encéfalo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Humanos , Enfermedad de Huntington/patología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Modelos Biológicos , Neuronas/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología
3.
Cell ; 159(4): 766-74, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417154

RESUMEN

The myelination of axons by oligodendrocytes has been suggested to be modulated by experience, which could mediate neural plasticity by optimizing the performance of the circuitry. We have assessed the dynamics of oligodendrocyte generation and myelination in the human brain. The number of oligodendrocytes in the corpus callosum is established in childhood and remains stable after that. Analysis of the integration of nuclear bomb test-derived (14)C revealed that myelin is exchanged at a high rate, whereas the oligodendrocyte population in white matter is remarkably stable in humans, with an annual exchange of 1/300 oligodendrocytes. We conclude that oligodendrocyte turnover contributes minimally to myelin modulation in human white matter and that this instead may be carried out by mature oligodendrocytes, which may facilitate rapid neural plasticity.


Asunto(s)
Envejecimiento , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/fisiología , Isótopos de Carbono/análisis , Niño , Preescolar , Cuerpo Calloso/metabolismo , Humanos , Lactante , Persona de Mediana Edad , Plasticidad Neuronal , Armas Nucleares , Sustancia Blanca/química , Sustancia Blanca/metabolismo , Adulto Joven
4.
Nature ; 613(7943): 355-364, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599988

RESUMEN

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Asunto(s)
Células , Metilación de ADN , Epigénesis Genética , Epigenoma , Humanos , Línea Celular , Células/clasificación , Células/metabolismo , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN/genética , ADN/metabolismo , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Especificidad de Órganos , Proteínas del Grupo Polycomb/metabolismo , Secuenciación Completa del Genoma
5.
Cell ; 153(6): 1219-1227, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746839

RESUMEN

Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear-bomb-test-derived ¹4C in genomic DNA, and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons constituting one-third of the neurons is subject to exchange. In adult humans, 700 new neurons are added in each hippocampus per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.


Asunto(s)
Envejecimiento , Hipocampo/citología , Hipocampo/fisiología , Neurogénesis , Neuronas/citología , Adulto , Animales , Humanos , Ratones , Modelos Biológicos , Neuronas/fisiología , Datación Radiométrica/métodos
6.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408749

RESUMEN

The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions. The results indicate that in the plasma membrane, MOP and 5-HT1A receptors form heterodimers that are characterized with an apparent dissociation constant Kdapp = (440 ± 70) nM). Prolonged exposure to all non-peptide opioids tested facilitated MOP and 5-HT1A heterodimerization and stabilized the heterodimer complexes, albeit to a different extent: Kd, Fentanylapp = (80 ± 70) nM), Kd,Morphineapp = (200 ± 70) nM, Kd, Codeineapp = (100 ± 70) nM and Kd, Oxycodoneapp = (200 ± 70) nM. The non-peptide opioids differed also in the extent to which they affected the mitogen-activated protein kinases (MAPKs) p38 and the extracellular signal-regulated kinase (Erk1/2), with morphine, codeine and fentanyl activating both pathways, whereas oxycodone activated p38 but not ERK1/2. Acute stimulation with different non-peptide opioids differently affected the intracellular Ca2+ levels and signalling dynamics. Hypothetically, targeting MOP−5-HT1A heterodimer formation could become a new strategy to counteract opioid induced hyperalgesia and help to preserve the analgesic effects of opioids in chronic pain.


Asunto(s)
Analgésicos Opioides , Dolor Crónico , Receptores Opioides mu , Analgésicos Opioides/farmacología , Codeína , Fentanilo/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Morfina/farmacología , Oxicodona , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Opioides mu/metabolismo
7.
Biochem Biophys Res Commun ; 526(1): 239-245, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32204913

RESUMEN

von Willebrand factor (vWF) is a large plasma glycoprotein that plays an important role in hemostasis by forming molecular bridges with platelets following vascular injury. Previously, we reported that hypothermia enhanced vWF production in the spleen, which resulted in the activation of the platelet pool in a hypothermia-induced murine model. However, the mechanisms that regulate vWF expression under hypothermic conditions remain unclear. In this study, we focused on vWF expression under hypothermic conditions in splenic endothelial cell culture. Human splenic endothelial cells (HSEC) were incubated at 20 °C for 1 h. Total RNA was extracted from the cells, and cDNA microarray gene expression analysis was performed. Genes that may be associated with vWF expression in low temperature culture conditions were then selected for further analysis. Gene expression analysis showed that low temperature conditions increased the expression of FOS and EGR1. We then hypothesized that these factors upregulate vWF mRNA expression in HSEC. The transcriptional inhibitors of EGR1 significantly inhibited vWF mRNA expression in HSEC cultured at a low temperature. Our analysis revealed that low temperatures enhance the gene expression of EGR1, which transcriptionally increases vWF expression. This acute-phase reaction may play an important role in platelet activation in the spleen during hypothermia.


Asunto(s)
Frío , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Células Endoteliales/metabolismo , Bazo/citología , Factor de von Willebrand/metabolismo , Células Cultivadas , ADN Complementario/genética , Regulación hacia Abajo/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Humanos , Hipotermia Inducida , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
8.
J Immunol ; 201(7): 1918-1927, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30135182

RESUMEN

The aim was to assess the activation and association of the NF-κB system across synovial membrane (SM) and articular cartilage (AC) in patients with knee osteoarthritis (OA) and ascertain its potential effects on catabolic mediator expression in advanced OA. SM and AC were obtained from 40 OA patients undergoing total knee arthroplasty and from 19 postmortem control subjects. NF-κB subunit RelA in nuclear and cytosolic fractions and NF-κB1-DNA binding in nuclear extracts was assessed by ELISA, whereas NFKB1, RELA, IL-8, IL-6, and MMP3 gene expression were analyzed by reverse transcriptase-quantitative PCR in tissues. We observed higher SM nuclear RelA protein levels and upregulated NF-κB1-DNA binding in OA patients compared with postmortem controls. However, in AC, lower nuclear RelA levels were observed compared with cytosolic extracts in patients. Nuclear RelA levels correlated positively with NF-κB1-DNA binding in SM and AC in patients. SM RELA and MMP3 mRNA levels were upregulated, whereas IL-8 and IL-6 as well as AC RELA were downregulated in patients compared with controls. In SM, nuclear RelA levels correlated positively with MMP3 gene expression in patients. A negative correlation was observed between SM nuclear RelA levels and AC NF-κB1-DNA binding, and SM nuclear NF-κB1-DNA binding correlated negatively with AC MMP3 and NFKB1 mRNA levels in patients. These findings highlight NF-κB-triggered cross-talk and feedback mechanisms between SM and AC in OA. Further, our findings strongly support a role for an activated NF-κB system in the transcriptional mechanism of inflammatory processes, especially in SM of patients with advanced OA.


Asunto(s)
Cartílago Articular/patología , Inflamación/inmunología , Subunidad p50 de NF-kappa B/metabolismo , Osteoartritis de la Rodilla/inmunología , Membrana Sinovial/inmunología , Factor de Transcripción ReIA/metabolismo , Adulto , Anciano , Células Cultivadas , ADN/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Persona de Mediana Edad , Subunidad p50 de NF-kappa B/genética , Unión Proteica , Transducción de Señal , Factor de Transcripción ReIA/genética , Activación Transcripcional
9.
Int J Mol Sci ; 20(3)2019 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-30717434

RESUMEN

The role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been highlighted in mechanisms underlying inflammatory and neuropathic pain processes. The present study was designed to investigate whether NF-κB signaling is associated with pain-related neuropeptide expression in patients with chronic back pain related to degenerative disc disease (DDD). Intervertebral disc (IVD) tissues were collected from forty DDD patients undergoing disc replacement or fusion surgery, and from eighteen postmortem (PM) control subjects. RELA, NFKB1, CGRP, TAC1, TRPV1, and MMP-3 gene expression were analyzed by RT-qPCR, while NF-κB subunit RelA and NF-κB1⁻DNA binding in nuclear extracts and calcitonin gene related peptide (CGRP), substance P (SP), and transient receptor potential, subfamily V, member 1 (TRPV1) protein levels in cytosolic extracts of tissues were assessed by enzyme-linked immunosorbent assay (ELISA). An upregulated NF-κB1⁻DNA binding, and higher CGRP and TRPV1 protein levels were observed in DDD patients compared to PM controls. In DDD patients, NF-κB1⁻DNA binding was positively correlated with nuclear RelA levels. Moreover, NF-κB1⁻DNA binding was positively associated with TRPV1 and MMP-3 gene and SP and TRPV1 protein expression in DDD patients. Our results indicate that the expression of SP and TRPV1 in IVD tissues was associated with NF-κB activation. Moreover, NF-κB may be involved in the generation or maintenance of peripheral pain mechanisms by the regulation of pain-related neuropeptide expression in DDD patients.


Asunto(s)
Degeneración del Disco Intervertebral/metabolismo , FN-kappa B/metabolismo , Dolor/metabolismo , Transducción de Señal , Sustancia P/genética , Canales Catiónicos TRPV/genética , Adulto , Femenino , Regulación de la Expresión Génica , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/fisiopatología , Degeneración del Disco Intervertebral/complicaciones , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/fisiopatología , Masculino , Persona de Mediana Edad , FN-kappa B/fisiología , Subunidad p50 de NF-kappa B/metabolismo , Subunidad p50 de NF-kappa B/fisiología , Dolor/etiología , Dolor/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/fisiología
10.
Neurobiol Dis ; 120: 63-75, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30189262

RESUMEN

Chronic alcohol abuse causes cognitive impairments associated with neurodegeneration and volume loss in the human hippocampus. Here, we hypothesize that alcohol reduces the number of granule cells in the human dentate gyrus and consequently contribute to the observed volume loss. Hippocampal samples were isolated from deceased donors with a history of chronic alcohol abuse and from controls with no alcohol overconsumption. From each case, a sample from the mid-portion of hippocampus was sectioned, immunostained for the neuronal nuclear marker NeuN, and counter stained with hematoxylin. Granule cell number and volume of granular cell layer in the dentate gyrus were estimated using stereology. We found a substantial reduction in granule cell number and also a significantly reduced volume of the granular cell layer of chronic alcohol abusers as compared to controls. In controls there was a slight age-related decline in the number of granule cells and volume of granular cell layer in line with previous studies. This was not observed among the alcoholics, possibly due to a larger impact of alcohol abuse than age on the degenerative changes in the dentate gyrus. Loss of neurons in the alcoholic group could either be explained by an increase of cell death or a reduced number of new cells added to the granular cell layer. However, there is no firm evidence for an increased neuronal death by chronic alcohol exposure, whereas a growing body of experimental data indicates that neurogenesis is impaired by alcohol. In a recent study, we reported that alcoholics show a reduced number of stem/progenitor cells and immature neurons in the dentate gyrus, hence that alcohol negatively affects hippocampal neurogenesis. The present results further suggest that such impairment of neurogenesis by chronic alcohol abuse also results in a net loss of granule cells in the dentate gyrus of hippocampus.


Asunto(s)
Alcoholismo/patología , Hipocampo/patología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas/patología , Adolescente , Adulto , Anciano , Recuento de Células/métodos , Muerte Celular/fisiología , Femenino , Hipocampo/citología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Biochim Biophys Acta Gen Subj ; 1861(2): 246-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27838394

RESUMEN

BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.


Asunto(s)
Núcleo Caudado/metabolismo , Núcleo Celular/metabolismo , Péptidos Opioides/metabolismo , Isoformas de Proteínas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Aminoácidos/metabolismo , Animales , Línea Celular Tumoral , Dinorfinas/metabolismo , Encefalinas/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Silenciador del Gen/fisiología , Humanos , Masculino , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Adulto Joven
12.
Eur J Epidemiol ; 32(9): 765-773, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28983736

RESUMEN

Sweden has a long tradition of recording cause of death data. The Swedish cause of death register is a high quality virtually complete register of all deaths in Sweden since 1952. Although originally created for official statistics, it is a highly important data source for medical research since it can be linked to many other national registers, which contain data on social and health factors in the Swedish population. For the appropriate use of this register, it is fundamental to understand its origins and composition. In this paper we describe the origins and composition of the Swedish cause of death register, set out the key strengths and weaknesses of the register, and present the main causes of death across age groups and over time in Sweden. This paper provides a guide and reference to individuals and organisations interested in data from the Swedish cause of death register.


Asunto(s)
Causas de Muerte/tendencias , Mortalidad/tendencias , Sistema de Registros , Accidentes de Tránsito/mortalidad , Distribución por Edad , Enfermedades Cardiovasculares/mortalidad , Certificado de Defunción , Femenino , Humanos , Masculino , Neoplasias/mortalidad , Sistema de Registros/normas , Sistema de Registros/estadística & datos numéricos , Suicidio/estadística & datos numéricos , Suecia/epidemiología
13.
Cereb Cortex ; 25(1): 97-108, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23960211

RESUMEN

Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the µ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/µ- and κ-/µ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/µ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.


Asunto(s)
Emociones/fisiología , Lateralidad Funcional/fisiología , Giro del Cíngulo/metabolismo , Péptidos Opioides/metabolismo , Dolor/metabolismo , Adulto , Anciano , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Adulto Joven
14.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658552

RESUMEN

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias de la Próstata , Análisis de la Célula Individual , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Aneuploidia , Próstata/patología , Próstata/metabolismo , Células Clonales , Diploidia , Anciano
15.
Am J Emerg Med ; 31(7): 1073-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23702057

RESUMEN

AIM: The aim of this study is to determine the prevalence of cardiac disease and its relationship to the victim's probable intent among patients with cardiac arrest due to drowning. METHOD: Retrospective autopsied drowning cases reported to the Swedish National Board of Forensic Medicine between 1990 and 2010 were included, alongside reported and treated out-of-hospital cardiac arrests due to drowning from the Swedish Out of Hospital Cardiac Arrest Registry that matched events in the National Board of Forensic Medicine registry (n = 272). RESULTS: Of 2166 drowned victims, most (72%) were males; the median age was 58 years (interquartile range, 42-71 years). Drowning was determined to be accidental in 55%, suicidal in 28%, and murder in 0.5%, whereas the intent was unclear in 16%. A contributory cause of death was found in 21%, and cardiac disease as a possible contributor was found in 9% of all autopsy cases. Coronary artery sclerosis (5%) and myocardial infarction (2%) were most frequent. Overall, cardiac disease was found in 14% of all accidental drownings, as compared with no cases (0%) in the suicide group; P = .05. Ventricular fibrillation was found to be similar in both cardiac and noncardiac cases (7%). This arrhythmia was found in 6% of accidents and 11% of suicides (P = .23). CONCLUSION: Among 2166 autopsied cases of drowning, more than half were considered to be accidental, and less than one-third, suicidal. Among accidents, 14% were found to have a cardiac disease as a possible contributory factor; among suicides, the proportion was 0%. The low proportion of cases showing ventricular fibrillation was similar, regardless of the presence of a cardiac disease.


Asunto(s)
Ahogamiento/etiología , Cardiopatías/complicaciones , Adulto , Anciano , Ahogamiento/mortalidad , Femenino , Cardiopatías/epidemiología , Homicidio/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Paro Cardíaco Extrahospitalario/etiología , Paro Cardíaco Extrahospitalario/mortalidad , Prevalencia , Sistema de Registros , Estudios Retrospectivos , Suicidio/estadística & datos numéricos , Suecia/epidemiología
16.
Acta Physiol (Oxf) ; 239(1): e13982, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097015

RESUMEN

AIM: While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS: We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS: Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION: In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.


Asunto(s)
Aprendizaje Profundo , Células Satélite del Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Núcleo Celular/metabolismo
17.
Genome Biol ; 24(1): 237, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858234

RESUMEN

Technologies to study localized host-pathogen interactions are urgently needed. Here, we present a spatial transcriptomics approach to simultaneously capture host and pathogen transcriptome-wide spatial gene expression information from human formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. We demonstrate this methodology in lung samples from COVID-19 patients and validate our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. Host-pathogen colocalization analysis identified putative modulators of SARS-CoV-2 infection in human lung cells. Our approach provides new insights into host response to pathogen infection through the simultaneous, unbiased detection of two transcriptomes in FFPE samples.


Asunto(s)
COVID-19 , Transcriptoma , Humanos , Fijación del Tejido , Formaldehído , SARS-CoV-2
18.
Thromb Res ; 223: 155-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758284

RESUMEN

BACKGROUND: Most platelets are present in peripheral blood, but some are stored in the spleen. Because the tissue environments of peripheral blood vessels and the spleen are quite distinct, the properties of platelets present in each may also differ. However, no studies have addressed this difference. We previously reported that hypothermia activates splenic platelets, but not peripheral blood platelets, whose biological significance remains unknown. In this study, we focused on platelet-derived microvesicles (PDMVs) and analyzed their biological significance connected to intrasplenic platelet activation during hypothermia. METHODS: C57Bl/6 mice were placed in an environment of -20 °C, and their rectal temperature was decreased to 15 °C to model hypothermia. Platelets and skeletal muscle tissue were collected and analyzed for their interactions. RESULTS: Transcriptomic changes between splenic and peripheral platelets were greater in hypothermic mice than in normal mice. Electron microscopy and real-time RT-PCR analysis revealed that platelets activated in the spleen by hypothermia internalized transcripts, encoding tissue repairing proteins, into PDMVs and released them into the plasma. Plasma microvesicles from hypothermic mice promoted wound healing in the mouse myoblast cell line C2C12. Skeletal muscles in hypothermic mice were damaged but recovered within 24 h after rewarming. However, splenectomy delayed recovery from skeletal muscle injury after the mice were rewarmed. CONCLUSIONS: These results indicate that PDMVs released from activated platelets in the spleen play an important role in the repair of skeletal muscle damaged by hypothermia.


Asunto(s)
Plaquetas , Hipotermia , Animales , Ratones , Plaquetas/metabolismo , Hipotermia/metabolismo , Bazo , Activación Plaquetaria , Cicatrización de Heridas
19.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745322

RESUMEN

Cardiomyocytes in the adult human heart show a regenerative capacity, with an annual renewal rate around 0.5%. Whether this regenerative capacity of human cardiomyocytes is employed in heart failure has been controversial. Using retrospective 14C birth dating we analyzed cardiomyocyte renewal in patients with end-stage heart failure. We show that cardiomyocyte generation is minimal in end-stage heart failure patients at rates 18-50 times lower compared to the healthy heart. However, patients receiving left ventricle support device therapy, who showed significant functional and structural cardiac improvement, had a >6-fold increase in cardiomyocyte renewal relative to the healthy heart. Our findings reveal a substantial cardiomyocyte regeneration potential in human heart disease, which could be exploited therapeutically.

20.
Exp Cell Res ; 317(2): 188-94, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20828558

RESUMEN

Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously ¹4C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that ¹4C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans.


Asunto(s)
Núcleo Celular/metabolismo , Miocitos Cardíacos/diagnóstico por imagen , Ploidias , Proliferación Celular , Separación Celular , Citometría de Flujo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Troponina I/fisiología , Troponina T/fisiología , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA