Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446738

RESUMEN

The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.


Asunto(s)
Transducción de Señal , Mutación , Dominios Proteicos
2.
Eur J Immunol ; 54(2): e2350385, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38073515

RESUMEN

Dendritic cells (DCs) are specialized antigen-presenting cells that initiate and regulate innate and adaptive immune responses. Solute carrier (SLC) transporters mediate diverse physiological functions and maintain cellular metabolite homeostasis. Recent studies have highlighted the significance of SLCs in immune processes. Notably, upon activation, immune cells undergo rapid and robust metabolic reprogramming, largely dependent on SLCs to modulate diverse immunological responses. In this review, we explore the central roles of SLC proteins and their transported substrates in shaping DC functions. We provide a comprehensive overview of recent studies on amino acid transporters, metal ion transporters, and glucose transporters, emphasizing their essential contributions to DC homeostasis under varying pathological conditions. Finally, we propose potential strategies for targeting SLCs in DCs to bolster immunotherapy for a spectrum of human diseases.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas Transportadoras de Solutos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Transportadoras de Solutos/química , Proteínas Transportadoras de Solutos/metabolismo , Diferenciación Celular , Células Dendríticas
3.
Mol Cell Proteomics ; 22(5): 100532, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934880

RESUMEN

Adenomatous polyposis coli (APC) is an important tumor suppressor and is mostly linked to the regulation of the Wnt/ß-catenin signaling pathway. APC mutation has been identified as an early event in more than 80% of sporadic colorectal cancers (CRCs). Moreover, prognostic differences are observed in CRC patients with APC mutations. Although previous genomics studies have investigated the roles of concomitant gene mutations in determining the phenotypic heterogeneity of APC-mutant tumors, valuable prognostic determinants for APC-mutant CRC patients are still lacking. Based on the proteome and phosphoproteome data, we classified APC-mutant colon cancer patients and revealed genomic, proteomic, and phosphoproteomic heterogeneity in APC-mutant tumors. More importantly, we identified RAI14 as a key prognostic determinant for APC-mutant but not APC-wildtype colon cancer patients. The heterogeneity and the significance of prognostic biomarkers in APC-mutant tumors were further validated in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) colon cancer cohort. In addition, we found that colon cancer patients with high expression of RAI14 were less responsive to chemotherapy. Knockdown of RAI14 in cell lines led to reduced cell migration and changes in epithelial-mesenchymal transition (EMT)-related markers. Mechanistically, knockdown of RAI14 remodeled the phosphoproteome associated with cell adhesion, which might affect EMT marker expression and promote F-actin degradation. Collectively, this work describes the phenotypic heterogeneity of APC-mutant tumors and identifies RAI14 as an important prognostic determinant for APC-mutant colon cancer patients. The prognostic utility of RAI14 in APC-mutant colon cancer will provide early warning and increase the chance of successful treatment.


Asunto(s)
Neoplasias del Colon , Proteínas del Citoesqueleto , Factores de Transcripción , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias del Colon/genética , Proteínas del Citoesqueleto/genética , Pueblos del Este de Asia , Pronóstico , Proteómica , Factores de Transcripción/genética
4.
Mol Cell Proteomics ; 22(5): 100545, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031867

RESUMEN

GSK3α and GSK3ß are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3ß plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3ß. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3ß, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3ß. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.


Asunto(s)
Relevancia Clínica , Neoplasias del Colon , Humanos , Proteínas del Citoesqueleto , Glucógeno Sintasa Quinasa 3 beta , Fosforilación , Isoformas de Proteínas , Proteínas Serina-Treonina Quinasas , Proteómica , Proteínas de Unión al ARN
5.
Chem Soc Rev ; 53(1): 137-162, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38018371

RESUMEN

Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.


Asunto(s)
Estructuras Metalorgánicas , Metaloproteínas , Estructuras Metalorgánicas/química , Metaloproteínas/química , Catálisis , Metales/química , Dominio Catalítico
6.
Anal Chem ; 96(1): 339-346, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38102989

RESUMEN

Mass spectrometry imaging (MSI) has emerged as a revolutionary analytical strategy in biomedical research for molecular visualization. By linking the characterization of functional metabolites with tissue architecture, it is now possible to reveal unknown biological functions of tissues. However, due to the complexity and high dimensionality of MSI data, mining bioinformatics-related peaks from batch MSI data sets and achieving complete spatially resolved metabolomics analysis remain a great challenge. Here, we propose novel MSI data processing software, Multi-MSIProcessor (MMP), which integrates the data read-in, MSI visualization, processed data preservation, and biomarker discovery functions. The MMP focuses on the AFADESI-MSI data platform but also supports mzXML and imzmL data input formats for compatibility with data generated by other MSI platforms such as MALDI/SIMS-MSI. MMP enables deep mining of batch MSI data and has flexible adaptability with the source code opened that welcomes new functions and personalized analysis strategies. Using multiple clinical biosamples with complex heterogeneity, we demonstrated that MMP can rapidly establish complete MSI analysis workflows, assess batch sample data quality, screen and annotate differential MS peaks, and obtain abnormal metabolic pathways. MMP provides a novel platform for spatial metabolomics analysis of multiple samples that could meet the diverse analysis requirements of scholars.


Asunto(s)
Metabolómica , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metabolómica/métodos , Biología Computacional , Procesamiento de Imagen Asistido por Computador
7.
Small ; 20(15): e2308278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009756

RESUMEN

Designing cost-efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal-air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe-based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec-1, achieved at a current density of 10 mA cm- 2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2 in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.

8.
BMC Neurosci ; 25(1): 8, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350864

RESUMEN

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and destruction of the cerebrovascular system is a major factor in the cascade of secondary injuries caused by TBI. Laser speckle imaging (LSCI)has high sensitivity in detecting cerebral blood flow. LSCI can visually show that transcranial focused ultrasound stimulation (tFUS) treatment stimulates angiogenesis and increases blood flow. To study the effect of tFUS on promoting angiogenesis in Controlled Cortical impact (CCI) model. tFUS was administered daily for 10 min and for 14 consecutive days after TBI. Cerebral blood flow was measured by LSCI at 1, 3, 7 and 14 days after trauma. Functional outcomes were assessed using LSCI and neurological severity score (NSS). After the last test, Nissl staining and vascular endothelial growth factor (VEGF) were used to assess neuropathology. TBI can cause the destruction of cerebrovascular system. Blood flow was significantly increased in TBI treated with tFUS. LSCI, behavioral and histological findings suggest that tFUS treatment can promote angiogenesis after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/patología , Circulación Cerebrovascular/fisiología
9.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1632-1640, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621948

RESUMEN

This study aims to explore the effects of tetramethylpyrazine(TMP) on pharmacokinetics in plasma and brain dialysate and neuropathic pain in the rat model of partial sciatic nerve injury(SNI), and to investigate the correlation between the analgesic effect of TMP and its concentrations in the plasma and brain dialysate. Male SD rats were randomized into Sham, SNI, and SNI+TMP groups. Mechanical stimulation with von frey filaments and cold spray method were employed to evaluate the mechanical sensitivity and cold sensitivity of rats. Another two groups, Sham+TMP and SNI+TMP, were used to intubate the common jugular vein and implant microdialysis probes into the anterior cingulate gyrus(ACC), respectively.After intraperitoneal injection of TMP at a dose of 80 mg·kg~(-1), automatic blood collection and intracerebral microdialysis(perfusion rate of 1 µL·min~(-1)) systems were used to collect the blood and brain dialysate for 24 h. HSS T3 C_(18) reversed-phase chromatographic column(2.1 mm×50 mm, 2.5 µm) was used for liquid chromatographic separation. Gradient elution was carried out with the mobile phase of methanol-water(containing 0.005% formic acid) at a flow rate of 0.25 mL·min~(-1). Electrospray ion source was used for mass spectrometry, and the scanning mode was multi-reaction monitoring under the positive ion mode. The ion pairs for quantitative analysis were TMP m/z 137/122 and aspirin m/z 179/137, respectively. DAS 2.11 was used to calculate the pharmacokinetic parameters. The optimal time of TMP to exert the analgesia effect and inhibit cold pain sensitivity was 60 min after treatment. The TMP in the plasma and brain dialysate of SNI rats showed the T_(max) of 15 min and 30 min, the C_(max) of(2 866.43±135.39) and(1 462.14±197.38) µg·L~(-1), the AUC_(0-t) of(241 463.30±28 070.31) and(213 115.62±32 570.07) µg·min·L~(-1), the MRT_(0-t) of(353.13±47.73) and(172.16±12.72) min, and the CL_Z of 0.73 and 0.36 L·min·kg~(-1), respectively. The analgesic effect of TMP had a significant correlation with the blood drug concentration in the ACC, which indicated that this method was suitable for the detection of TMP in rat plasma and brain dialysate. The method is accurate, reliable, and sensitive and can realize the important value of the application of correlation analysis theory of "automatic blood collection-microdialysis/PK-PD" in the research on neuropathic pain.


Asunto(s)
Encéfalo , Neuralgia , Pirazinas , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Nervio Ciático , Analgésicos
10.
Biophys J ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38160255

RESUMEN

Drosophila Ncd proteins are motor proteins that play important roles in spindle organization. Ncd and the tubulin dimer are highly charged. Thus, it is crucial to investigate Ncd-tubulin dimer interactions in the presence of ions, especially ions that are bound or restricted at the Ncd-tubulin dimer binding interfaces. To consider the ion effects, widely used implicit solvent models treat ions implicitly in the continuous solvent environment without focusing on the individual ions' effects. But highly charged biomolecules such as the Ncd and tubulin dimer may capture some ions at highly charged regions as bound ions. Such bound ions are restricted to their binding sites; thus, they can be treated as part of the biomolecules. By applying multiscale computational methods, including the machine-learning-based Hybridizing Ions Treatment-2 program, molecular dynamics simulations, DelPhi, and DelPhiForce, we studied the interaction between the Ncd motor domain and the tubulin dimer using a hybrid solvent model, which considers the bound ions explicitly and the other ions implicitly in the solvent environment. To identify the importance of treating bound ions explicitly, we also performed calculations using the implicit solvent model without considering the individual bound ions. We found that the calculations of the electrostatic features differ significantly between those of the hybrid solvent model and the pure implicit solvent model. The analyses show that treating bound ions at highly charged regions explicitly is crucial for electrostatic calculations. This work proposes a machine-learning-based approach to handle the bound ions using the hybrid solvent model. Such an approach is not only capable of handling kinesin-tubulin complexes but is also appropriate for other highly charged biomolecules, such as DNA/RNA, viral capsid proteins, etc.

11.
J Lipid Res ; 64(5): 100368, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028769

RESUMEN

The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.


Asunto(s)
Proopiomelanocortina , Receptor Toll-Like 4 , Femenino , Ratones , Masculino , Animales , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Obesidad/metabolismo , Peso Corporal , Tejido Adiposo Pardo/metabolismo , Termogénesis/genética , Neuronas/metabolismo , Lípidos , Metabolismo Energético
12.
Anal Chem ; 95(21): 8197-8205, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191225

RESUMEN

Fatty acids (FAs) and fatty alcohols (FOHs) are essential compounds for maintaining life. Due to the inherent poor ionization efficiency, low abundance, and complex matrix effect, such metabolites are challenging to precisely quantify and explore deeply. In this study, a pair of novel isotope derivatization reagents known as d0/d5-1-(2-oxo-2-(piperazin-1-yl) ethyl) pyridine-1-ium (d0/d5-OPEPI) were designed and synthesized, and an in-depth screening strategy for FAs and FOHs was established based on d0/d5-OPEPI coupled with liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS). Using this approach, a total of 332 metabolites were identified and annotated (some of the FAs and FOHs were reconfirmed by standards). Our results demonstrated that OPEPI labeling could significantly enhance the MS response of FAs and FOHs via the introduction of permanently charged tags. The detection sensitivities of FAs were increased by 200-2345-fold compared with the nonderivatization method. At the same time, for FOHs, due to the absence of ionizable functional groups, sensitive detection was achieved utilizing OPEPI derivatization. One-to-one internal standards were provided by using d5-OPEPI labeling to minimize the errors in quantitation. Moreover, the method validation results showed that the method was stable and reliable. Finally, the established method was successfully applied to the study of the FA and FOH profiles of two heterogeneous severe clinical disease tissues. This study would improve our understanding of the pathological and metabolic mechanisms of FAs and FOHs for inflammatory myopathies and pancreatic cancer and also prove the generality and accuracy of the developed analytical method for complex samples.


Asunto(s)
Miositis , Neoplasias Pancreáticas , Humanos , Ácidos Grasos/análisis , Espectrometría de Masas en Tándem/métodos , Alcoholes Grasos , Isótopos , Neoplasias Pancreáticas
13.
Anal Chem ; 95(9): 4521-4528, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36843270

RESUMEN

Single-atomic-site catalysts (SASCs) with peroxidase (POD)-like activities have been widely used in various sensing platforms, like the enzyme-linked immunosorbent assay (ELISA). Herein, a two-dimensional Fe-N-C-based SASC (2D Fe-SASC) is successfully synthesized with excellent POD-like activity (specific activity = 90.11 U/mg) and is used to design the ELISA for herbicide detection. The 2D structure of Fe-SASC enables the exposure of numerous single atomic active sites on the surface as well as boosts the POD-like activity, thereby enhancing the sensing performance. 2D Fe-SASC is assembled into competitive ELISA kit, which achieves an excellent detection performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Fe-SASC has great potential in replacing high-cost natural enzymes and working on various advanced sensing platforms with high sensitivity for the detection of various target biomarkers.


Asunto(s)
Herbicidas , Peroxidasa , Peroxidasa/química , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos
14.
Small ; 19(40): e2302929, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37282757

RESUMEN

Various applications lead to the requirement of nanozymes with either specific activity or multiple enzyme-like activities. To this end, intelligent nanozymes with freely switching specificity abilities hold great promise to adapt to complicated and changeable practical conditions. Herein, a nitrogen-doped carbon-supported copper single-atom nanozyme (named Cu SA/NC) with switchable specificity is reported. Atomically dispersed active sites endow Cu SA/NC with specific peroxidase-like activity at room temperature. Furthermore, the intrinsic photothermal conversion ability of Cu SA/NC enables the specificity switch by additional laser irradiation, where photothermal-induced temperature elevation triggers the expression of oxidase-like and catalase-like activity of Cu SA/NC. For further applications in practice, a pretreatment-and-sensing integration kit (PSIK) is constructed, where Cu SA/NC can successively achieve sample pretreatment and sensitive detection by switching from multi-activity mode to specific-activity mode. This study sets the foundation for nanozymes with switchable specificity and broadens the application scope in point-of-care testing.


Asunto(s)
Carbono , Cobre , Cobre/química , Carbono/química , Nitrógeno/química
15.
Circ Res ; 128(2): 232-245, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33176578

RESUMEN

RATIONALE: Over 50% of patients with heart failure have preserved ejection fraction (HFpEF), rather than reduced ejection fraction. Complexity of its pathophysiology and the lack of animal models hamper the development of effective therapy for HFpEF. OBJECTIVE: This study was designed to investigate the metabolic mechanisms of HFpEF and test therapeutic interventions using a novel animal model. METHODS AND RESULTS: By combining the age, long-term high-fat diet, and desoxycorticosterone pivalate challenge in a mouse model, we were able to recapture the myriad features of HFpEF. In these mice, mitochondrial hyperacetylation exacerbated while increasing ketone body availability rescued the phenotypes. The HFpEF mice exhibited overproduction of IL (interleukin)-1ß/IL-18 and tissue fibrosis due to increased assembly of NLPR3 inflammasome on hyperacetylated mitochondria. Increasing ß-hydroxybutyrate level attenuated NLPR3 inflammasome formation and antagonized proinflammatory cytokine-triggered mitochondrial dysfunction and fibrosis. Moreover, ß-hydroxybutyrate downregulated the acetyl-CoA pool and mitochondrial acetylation, partially via activation of CS (citrate synthase) and inhibition of fatty acid uptake. CONCLUSIONS: Therefore, we identify the interplay of mitochondrial hyperacetylation and inflammation as a key driver in HFpEF pathogenesis, which can be ameliorated by promoting ß-hydroxybutyrate abundance.


Asunto(s)
Antiinflamatorios/farmacología , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Ácido 3-Hidroxibutírico , Células 3T3 , Acetilcoenzima A/metabolismo , Acetilación , Anciano , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Ratas , Sirtuina 3/genética , Sirtuina 3/metabolismo , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
16.
Analyst ; 148(19): 4637-4654, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37698090

RESUMEN

Implantable microfluidics involves integrating microfluidic functionalities into implantable devices, such as medical implants or bioelectronic devices, revolutionizing healthcare by enabling personalized and precise diagnostics, targeted drug delivery, and regeneration of targeted tissues or organs. The impact of implantable microfluidics depends heavily on advancements in both methods and applications. Despite significant progress in the past two decades, continuous advancements are still required in fluidic control and manipulation, device miniaturization and integration, biosafety considerations, as well as the development of various application scenarios to address a wide range of healthcare issues. In this review, we discuss advancements in implantable microfluidics, focusing on methods and applications. Regarding methods, we discuss progress made in fluid manipulation, device fabrication, and biosafety considerations in implantable microfluidics. In terms of applications, we review advancements in using implantable microfluidics for drug delivery, diagnostics, tissue engineering, and energy harvesting. The purpose of this review is to expand research ideas for the development of novel implantable microfluidic devices for various healthcare applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microfluídica , Dispositivos Laboratorio en un Chip , Miniaturización , Prótesis e Implantes
17.
Future Oncol ; 19(8): 587-601, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37097730

RESUMEN

Aim: To develop and validate a radiomics-based combined model (ModelRC) to predict the pathological grade of endometrial cancer. Methods: A total of 403 endometrial cancer patients from two independent centers were enrolled as training, internal validation and external validation sets. Radiomic features were extracted from T2-weighted images, apparent diffusion coefficient map and contrast-enhanced 3D volumetric interpolated breath-hold examination images. Results: Compared with the clinical model and radiomics model, ModelRC showed superior performance; the areas under the receiver operating characteristic curves were 0.920 (95% CI: 0.864-0.962), 0.882 (95% CI: 0.779-0.955) and 0.881 (95% CI: 0.815-0.939) for the training, internal validation and external validation sets, respectively. Conclusion: ModelRC, which incorporated clinical and radiomic features, exhibited excellent performance in the prediction of high-grade endometrial cancer.


Accurate preoperative evaluation of the pathological grade of endometrial carcinoma is very important for the selection of treatment and prognosis. This study tried to develop a simple combined model based on radiomic features from endometrial carcinoma MRI and clinical features of patients. Compared with the clinical model and the radiomic model, the combined model showed superior performance. Therefore, this combined model would help patients and clinicians to make more rational decisions when choosing treatment strategies.


Asunto(s)
Neoplasias Endometriales , Imagen por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética , Endometrio , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/cirugía
18.
Mol Cell Proteomics ; 20: 100058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33077685

RESUMEN

The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.


Asunto(s)
Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Glicosilación , Humanos , Insectos/citología , Polisacáridos/química , Proteínas Recombinantes/genética , Glicoproteína de la Espiga del Coronavirus/genética , Espectrometría de Masas en Tándem
19.
Anim Biotechnol ; 34(4): 986-993, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34865600

RESUMEN

The DNA copy number variations (CNVs) are widely involved in affecting various kinds of biological functions, such as environmental adaptation. Tibetan sheep and White Suffolk sheep are two representative indigenous and exotic breeds raised in Sichuan, China, and both of them have many contrasting biological characteristics. In this study, we employed high-throughput sequencing approach to investigate genome-wide CNVs between the two sheep breeds. A total of 11,135 CNV regions (CNVRs) consisting of 6,488 deletions and 4,647 duplications were detected, whose length ranged from 1,599 bp to 0.56 Mb with the mean of 4,658 bp. There were 281 CNVRs segregated between Tibetan sheep and White Suffolk sheep, and 18 of them have been fixed within both breeds. Functional analyses of candidate genes within the segregating CNVRs revealed the thyroid hormone signaling pathway and CTNNB1 gene that would be responsible for differential biological characteristics of breeds, such as energy metabolism, seasonal reproduction, and litter size. Furthermore, the segregating CNVRs identified in this study were overlapped with many known quantitative trait loci that are associated with growth, testis weight, and reproductive seasonality. In conclusion, these results help us better understanding differential biological characteristics between Tibetan sheep and White Suffolk sheep.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sitios de Carácter Cuantitativo , Masculino , Animales , Ovinos/genética , Variaciones en el Número de Copia de ADN/genética , Tibet , China , Transducción de Señal
20.
Chem Soc Rev ; 51(16): 6948-6964, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894547

RESUMEN

With high activity and specificity to conduct catalysis under mild conditions, enzymes show great promise in many fields. However, they are not acclimatized to environments in practice after leaving the familiar biological conditions. Aiming at this issue, nanobiocatalysis, a fresh area integrating nanotechnology and enzymatic catalysis, is expected to design biocatalysis based on materials science. Specifically, nano-integrated biocatalysis and bio-inspired nanocatalysis are considered as two effective nanobiocatalytic systems to meet different design needs. Notably, both systems are not entirely separated, and the combination of both further sparks more possibilities. This review summarizes the type, construction, and function of nanobiocatalytic systems, analyzing the pros and cons of different strategies. Moreover, the corresponding applications in bioassay, biotherapy, and environmental remediation are highlighted. We hope that the advent of nanobiocatalysis will help in grasping the inherence of biocatalysis and propel biocatalytic applications.


Asunto(s)
Ciencia de los Materiales , Nanotecnología , Biocatálisis , Catálisis , Enzimas Inmovilizadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA