Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267547

RESUMEN

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sepsis , Animales , Sepsis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Ratas , Administración Intravenosa
2.
Biomed Chromatogr ; 36(11): e5462, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35881540

RESUMEN

The growing evidence has endorsed the view that therapeutic drug monitoring of caffeine for apnea of prematurity is helpful for dose tailoring when the therapeutic response is lacking or toxicity is suspected. However, plasma without caffeine is difficult to obtain. Therefore, a method was developed and validated to measure caffeine and its three primary metabolites (paraxanthine, theobromine and theophylline) using LC-ESI-MS/MS in human plasma and several surrogate matrices. The chromatographic separation of analytes was finally achieved on a Waters Symmetry C18 (4.6 × 75 mm, 3.5 µm) column. Several strategies were successfully applied to overcome the matrix effects: (a) appropriate dilution for sample cleanup; (b) a starting lower proportion of organic phase; and (c) multiple individual stable-labeled isotopic internal standards. The parallelism between the authentic matrix and surrogate matrices was convincing. The recovery of the analytes in both human plasma and rat plasma was acceptable over the linear range (0.500-50.0 µg/ml for caffeine and 0.0100-1.00 µg/ml for three metabolites). The method was successfully applied in 118 samples from 74 preterm infants with apnea of prematurity. The rat plasma or ultrapure water as a surrogate matrix is worthy of recommendation for routine therapeutic drug monitoring of caffeine.


Asunto(s)
Cafeína , Espectrometría de Masas en Tándem , Animales , Apnea/tratamiento farmacológico , Monitoreo de Drogas , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratas , Espectrometría de Masas en Tándem/métodos , Teobromina/análisis , Teobromina/química , Teofilina , Agua
3.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33931765

RESUMEN

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Asunto(s)
Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacocinética , Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/efectos adversos , Disponibilidad Biológica , Biotransformación , Cápsulas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Femenino , Glycyrrhiza/efectos adversos , Células HEK293 , Humanos , Síndrome de Liddle/inducido químicamente , Síndrome de Liddle/enzimología , Masculino , Seguridad del Paciente , Fitoquímicos/administración & dosificación , Fitoquímicos/efectos adversos , Ratas Sprague-Dawley , Medición de Riesgo
4.
Acta Pharmacol Sin ; 40(6): 833-849, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30327544

RESUMEN

ShenMai, an intravenous injection prepared from steamed Panax ginseng roots (Hongshen) and Ophiopogon japonicus roots (Maidong), is used as an add-on therapy for coronary artery disease and cancer; saponins are its bioactive constituents. Since many saponins inhibit human organic anion-transporting polypeptides (OATP)1B, this investigation determined the inhibition potencies of circulating ShenMai saponins on the transporters and the joint potential of these compounds for ShenMai-drug interaction. Circulating saponins and their pharmacokinetics were characterized in rats receiving a 30-min infusion of ShenMai at 10 mL/kg. Inhibition of human OATP1B1/1B3 and rat Oatp1b2 by the individual saponins was investigated in vitro; the compounds' joint inhibition was also assessed in vitro and the data was processed using the Chou-Talalay method. Plasma protein binding was assessed by equilibrium dialysis. Altogether, 49 saponins in ShenMai were characterized and graded into: 10-100 µmol/day (compound doses from ShenMai; 7 compounds), 1-10 µmol/day (17 compounds), and <1 µmol/day (25 compounds, including Maidong ophiopogonins). After dosing, circulating saponins were protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd, Ra1, Rg3, Ra2, and Ra3, protopanaxatriol-type ginsenosides Rg1, Re, Rg2, and Rf, and ginsenoside Ro. The protopanaxadiol-type ginsenosides exhibited maximum plasma concentrations of 2.1-46.6 µmol/L, plasma unbound fractions of 0.4-1.0% and terminal half-lives of 15.6-28.5 h (ginsenoside Rg3, 1.9 h), while the other ginsenosides exhibited 0.1-7.7 µmol/L, 20.8-99.2%, and 0.2-0.5 h, respectively. The protopanaxadiol-type ginsenosides, ginsenosides without any sugar attachment at C-20 (except ginsenoside Rf), and ginsenoside Ro inhibited OATP1B3 more potently (IC50, 0.2-3.5 µmol/L) than the other ginsenosides (≥22.6 µmol/L). Inhibition of OATP1B1 by ginsenosides was less potent than OATP1B3 inhibition. Ginsenosides Rb1, Rb2, Rc, Rd, Ro, Ra1, Re, and Rg2 likely contribute the major part of OATP1B3-mediated ShenMai-drug interaction potential, in an additive and time-related manner.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Ginsenósidos/farmacocinética , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/antagonistas & inhibidores , Administración Intravenosa , Animales , Combinación de Medicamentos , Interacciones Farmacológicas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Ginsenósidos/administración & dosificación , Ginsenósidos/sangre , Ginsenósidos/metabolismo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Masculino , Ophiopogon/química , Panax/química , Unión Proteica , Ratas Sprague-Dawley , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo
5.
Stem Cells ; 35(7): 1719-1732, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28520232

RESUMEN

Mesenchymal stem cells (MSCs) negatively modulate immune properties. Induced pluripotent stem cells (iPSCs)-derived MSCs are alternative source of MSCs. However, the effects of iPSC-MSCs on T cells phenotypes in vivo remain unclear. We established an iPSC-MSC-transplanted host versus graft reaction mouse model using subcapsular kidney injection. Th1, Th2, regulatory T cells (Treg), and Th17 phenotypes and their cytokines were investigated in vivo and in vitro. The role of caspases and the soluble factors involved in the effects of MSCs were examined. We found that iPSC-MSC grafts led to more cell survival and less infiltration of inflammatory cells in mice. iPSC-MSC transplantation inhibited T cell proliferation, decreased Th1 and Th2 phenotypes and cytokines, upregulated Th17 and Treg subsets. Moreover, iPSC-MSCs inhibited the cleavage of caspases 3 and 8 and inhibition of caspases downregulated Th1, Th2 responses and upregulated Th17, Treg responses. Soluble factors were determined using protein array and TGF-ß1/2/3, IL-10, and MCP-1 were found to be highly expressed in iPSC-MSCs. The administration of the soluble factors decreased Th1/2 response, upregulated Treg response and inhibited the cleavage of caspases. Our results demonstrate that iPSC-MSCs regulate T cell responses as a result of a combined action of the above soluble factors secreted by iPSC-MSCs. These factors suppress T cell responses by inhibiting the cleavage of caspases. These data provide a novel immunomodulatory mechanism for the underlying iPSC-MSC-based immunomodulatory effects on T cell responses. Stem Cells 2017;35:1719-1732.


Asunto(s)
Caspasas/inmunología , Inmunomodulación , Células Madre Pluripotentes Inducidas/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Caspasas/genética , Diferenciación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Femenino , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Ensayo de Capsula Subrrenal , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/inmunología , Células Th2/citología , Células Th2/inmunología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Trasplante Heterólogo
6.
Acta Pharmacol Sin ; 39(12): 1935-1946, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30054600

RESUMEN

Terpene lactones are a class of bioactive constituents of standardized preparations of Ginkgo biloba leaf extract, extensively used as add-on therapies in patients with ischemic cardiovascular and cerebrovascular diseases. This investigation evaluated human pharmacokinetics of ginkgo terpene lactones and impact of their carboxylation in blood. Human subjects received oral YinXing-TongZhi tablet or intravenous ShuXueNing, two standardized ginkgo preparations. Their plasma protein-binding and platelet-activating factor antagonistic activity were assessed in vitro. Their carboxylation was assessed in phosphate-buffered saline (pH 7.4) and in human plasma. After dosing YinXing-TongZhi tablet, ginkgolides A and B and bilobalide exhibited significantly higher systemic exposure levels than ginkgolides C and J; after dosing ShuXueNing, ginkgolides A, B, C, and J exhibited high exposure levels. The compounds' unbound fractions in plasma were 45-92%. Apparent oral bioavailability of ginkgolides A and B was mostly >100%, while that of ginkgolides C and J was 6-15%. Bilobalide's bioavailability was probably high but lower than that of ginkgolides A/B. Terminal half-lives of ginkgolides A, B, and C (4-7 h) after dosing ShuXueNing were shorter than their respective values (6-13 h) after dosing YinXing-TongZhi tablet. Half-life of bilobalide after dosing the tablet was around 5 h. Terpene lactones were roughly evenly distributed in various body fluids and tissues; glomerular-filtration-based renal excretion was the predominant elimination route for the ginkgolides and a major route for bilobalide. Terpene lactones circulated as trilactones and monocarboxylates. Carboxylation reduced platelet-activating factor antagonistic activity of ginkgolides A, B, and C. Ginkgolide J, bilobalide, and ginkgo flavonoids exhibited no such bioactivity. Collectively, differences in terpene lactones' exposure between the two preparations and influence of their carboxylation in blood should be considered in investigating the relative contributions of terpene lactones to ginkgo preparations' therapeutic effects. The results here will inform rational clinical use of ginkgo preparations.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Ginkgólidos/farmacocinética , Lactonas/farmacocinética , Factor de Activación Plaquetaria/antagonistas & inhibidores , Adulto , Animales , Fenómenos Bioquímicos/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Femenino , Ginkgo biloba/química , Ginkgólidos/sangre , Ginkgólidos/química , Ginkgólidos/orina , Células HEK293 , Humanos , Lactonas/sangre , Lactonas/química , Lactonas/orina , Masculino , Conejos , Adulto Joven
7.
Acta Pharmacol Sin ; 39(6): 1048-1063, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29620050

RESUMEN

Anlotinib is a new oral tyrosine kinase inhibitor; this study was designed to characterize its pharmacokinetics and disposition. Anlotinib was evaluated in rats, tumor-bearing mice, and dogs and also assessed in vitro to characterize its pharmacokinetics and disposition and drug interaction potential. Samples were analyzed by liquid chromatography/mass spectrometry. Anlotinib, having good membrane permeability, was rapidly absorbed with oral bioavailability of 28%-58% in rats and 41%-77% in dogs. Terminal half-life of anlotinib in dogs (22.8±11.0 h) was longer than that in rats (5.1±1.6 h). This difference appeared to be mainly associated with an interspecies difference in total plasma clearance (rats, 5.35±1.31 L·h-1·kg-1; dogs, 0.40±0.06 L·h-1/kg-1). Cytochrome P450-mediated metabolism was probably the major elimination pathway. Human CYP3A had the greatest metabolic capability with other human P450s playing minor roles. Anlotinib exhibited large apparent volumes of distribution in rats (27.6±3.1 L/kg) and dogs (6.6±2.5 L/kg) and was highly bound in rat (97%), dog (96%), and human plasma (93%). In human plasma, anlotinib was predominantly bound to albumin and lipoproteins, rather than to α1-acid glycoprotein or γ-globulins. Concentrations of anlotinib in various tissue homogenates of rat and in those of tumor-bearing mouse were significantly higher than the associated plasma concentrations. Anlotinib exhibited limited in vitro potency to inhibit many human P450s, UDP-glucuronosyltransferases, and transporters, except for CYP3A4 and CYP2C9 (in vitro half maximum inhibitory concentrations, <1 µmol/L). Based on early reported human pharmacokinetics, drug interaction indices were 0.16 for CYP3A4 and 0.02 for CYP2C9, suggesting that anlotinib had a low propensity to precipitate drug interactions on these enzymes. Anlotinib exhibits many pharmacokinetic characteristics similar to other tyrosine kinase inhibitors, except for terminal half-life, interactions with drug metabolizing enzymes and transporters, and plasma protein binding.


Asunto(s)
Indoles/administración & dosificación , Indoles/farmacocinética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Células CACO-2 , Cromatografía Liquida , Neoplasias del Colon/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Perros , Interacciones Farmacológicas , Femenino , Células HEK293 , Semivida , Xenoinjertos , Humanos , Absorción Intestinal , Masculino , Espectrometría de Masas , Tasa de Depuración Metabólica , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Animales , Modelos Biológicos , Trasplante de Neoplasias , Unión Proteica , Ratas Sprague-Dawley , Especificidad de la Especie , Distribución Tisular
8.
Acta Pharmacol Sin ; 37(4): 530-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26838074

RESUMEN

AIM: Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. METHODS: Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. RESULTS: A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. CONCLUSION: Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Glucósidos/farmacocinética , Glicósidos/farmacocinética , Monoterpenos/farmacocinética , Paeonia/química , Adulto , Animales , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Permeabilidad de la Membrana Celular , Femenino , Glucósidos/sangre , Glucósidos/orina , Glicósidos/sangre , Glicósidos/orina , Humanos , Masculino , Monoterpenos/sangre , Monoterpenos/orina , Raíces de Plantas/química , Unión Proteica , Ratas Sprague-Dawley , Adulto Joven
9.
Acta Pharmacol Sin ; 36(5): 627-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25891082

RESUMEN

AIM: Tanshinol is an important catechol in the antianginal herb Salvia miltiorrhiza roots (Danshen). This study aimed to characterize tanshinol methylation. METHODS: Metabolites of tanshinol were analyzed by liquid chromatography/mass spectrometry. Metabolism was assessed in vitro with rat and human enzymes. The major metabolites were synthesized for studying their interactions with drug metabolizing enzymes and transporters and their vasodilatory properties. Dose-related tanshinol methylation and its influences on tanshinol pharmacokinetics were also studied in rats. RESULTS: Methylation, preferentially in the 3-hydroxyl group, was the major metabolic pathway of tanshinol. In rats, tanshinol also underwent considerable 3-O-sulfation, which appeared to be poor in human liver. These metabolites were mainly eliminated via renal excretion, which involved tubular secretion mainly by organic anion transporter (OAT) 1. The methylated metabolites had no vasodilatory activity. Entacapone-impaired methylation did not considerably increase systemic exposure to tanshinol in rats. The saturation of tanshinol methylation in rat liver could be predicted from the Michaelis constant of tanshinol for catechol-O-methyltransferase (COMT). Tanshinol had low affinity for human COMT and OATs; its methylated metabolites also had low affinity for the transporters. Tanshinol and its major human metabolite (3-O-methyltanshinol) exhibited negligible inhibitory activities against human cytochrome P450 enzymes, organic anion transporting polypeptides 1B1/1B3, multidrug resistance protein 1, multidrug resistance-associated protein 2, and breast cancer resistance protein. CONCLUSION: Tanshinol is mainly metabolized via methylation. Tanshinol and its major human metabolite have low potential for pharmacokinetic interactions with synthetic antianginal agents. This study will help define the risk of hyperhomocysteinemia related to tanshinol methylation.


Asunto(s)
Ácidos Cafeicos/farmacocinética , Fármacos Cardiovasculares/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Hígado/enzimología , Salvia miltiorrhiza/química , Administración Oral , Animales , Biotransformación , Ácidos Cafeicos/administración & dosificación , Ácidos Cafeicos/aislamiento & purificación , Ácidos Cafeicos/toxicidad , Fármacos Cardiovasculares/administración & dosificación , Fármacos Cardiovasculares/aislamiento & purificación , Fármacos Cardiovasculares/toxicidad , Catecol O-Metiltransferasa/metabolismo , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/toxicidad , Interacciones de Hierba-Droga , Humanos , Inyecciones Intravenosas , Túbulos Renales/metabolismo , Masculino , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Metilación , Microsomas Hepáticos/enzimología , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Fitoterapia , Raíces de Plantas , Plantas Medicinales , Ratas Sprague-Dawley , Eliminación Renal , Sulfatos/metabolismo
10.
Acta Pharmacol Sin ; 34(11): 1437-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056706

RESUMEN

AIM: To investigate the pharmacokinetics and disposition of simmitecan (L-P) that was a water-soluble ester prodrug of chimmitecan (L-2-Z) with potent anti-tumor activities in different experimental animals, and to assess its drug-drug interaction potential. METHODS: SD rats were injected with a single iv bolus doses of L-P (3.75, 7.5 and 15 mg/kg). The pharmacokinetics, tissue distribution, excretion and metabolism of L-P and its active metabolite L-2-Z were studied through quantitative measurements and metabolite profiling with LC/MS. The binding of L-P and L-2-Z to rat plasma proteins was examined using an ultrafiltration method. Systemic exposures of beagle dogs to L-P as well as drug distribution in tumors of the nude mice xenograft model of human hepatic cancer SMMC-7721 cells were also examined. The metabolism of L-P by liver mcirosomal carboxylesterase in vitro was investigated in different species. The effects of L-P and L-2-Z on cytochrome P450 enzymes were examined using commercial screening kits. RESULTS: The in vivo biotransformation of L-P to L-2-Z showed a significant species difference, with a mean elimination half-life t1/2 of approximately 1.4 h in rats and 1.9 h in dogs. The systemic exposure levels of L-P and L-2-Z were increased in a dose-dependent manner. In rats, approximately 66% of L-P and 79% of L-2-Z were bound to plasma proteins. In rats and the nude mice bearing human hepatic cancers, most organ tissues had significantly higher concentrations of L-P than the corresponding plasma levels. In the tumor tissues, the L-P levels were comparable to those of plasma, whereas the L-2-Z levels were lower than the L-P levels. In rats, L-P was eliminated mainly via biliary excretion, but metabolism played an important role in elimination of the intact L-P. Finally, L-P and L-2-Z exerted moderate inhibition on the activity of CYP3A4 in vitro. CONCLUSION: L-P and L-2-Z have relatively short elimination half-lives and L-P is mainly eliminated via biliary excretion. The species difference in the conversion of L-P to L-2-Z and potential drug-drug interactions due to inhibition of CYP3A4 should be considered in further studies.


Asunto(s)
Antineoplásicos/farmacocinética , Camptotecina/análogos & derivados , Inhibidores Enzimáticos/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Camptotecina/administración & dosificación , Camptotecina/farmacocinética , Camptotecina/farmacología , Carboxilesterasa/metabolismo , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A , Perros , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Femenino , Semivida , Humanos , Inyecciones Intravenosas , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Profármacos , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Acta Pharmacol Sin ; 34(10): 1337-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974515

RESUMEN

AIM: Both Borneolum (Chinese name Bingpian; dextrorotatory borneol) and Borneolum syntheticum (synthetic Bingpian; a mixture of optically inactive borneol and isoborneol) have been used for medicinal purposes in Chinese traditional medicine. The aim of this study was to develop a sensitive assay for measuring volatile ingredients borneol, isoborneol, and their metabolite camphor in pharmacokinetic study of Bingpian. METHODS: Rat plasma samples were prepared using liquid-liquid microextraction: 70 µL of plasma sample (containing 125 nmol/L naphthalene as the internal standard) was extracted with 35 µL of n-hexane. The resulting n-hexane extract (20 µL) was introduced into a gas chromatography/mass spectrometry system using programmable temperature vaporizing-based large-volume injection. The assay was validated to demonstrate its reliability for the intended use. Using this assay, pharmacokinetic studies of Bingpian, synthetic Bingpian, and Fufang-Danshen tablets (containing synthetic Bingpian) were conducted in rats. RESULTS: The extraction efficiency for the analytes and the internal standard from plasma was almost constant with decrease in n-hexane-to-plasma volume ratio, thus enabling a small volume of extracting solvent to be used for sample preparation, and enhancing the assay sensitivity. The lower quantification limit for measuring borneol, isoborneol, and camphor in plasma was 0.98 nmol/L, which was 33-330 times more sensitive than those reported earlier for Bingpian and synthetic Bingpian. The applicability of the miniaturized liquid-liquid extraction technique could be extended to measure other volatile and nonvolatile medicinal compounds in biomatrices, which can be predicted according to the analytes' octanol/water distribution coefficient (logD) and acid dissociation constant (pKa). CONCLUSION: This assay is sensitive, accurate and free of matrix effects, and can be applied to pharmacokinetic studies of Bingpian, synthetic Bingpian, and Bingpian-containing herbal products.


Asunto(s)
Canfanos/farmacocinética , Alcanfor/farmacocinética , Cromatografía de Gases y Espectrometría de Masas/métodos , Animales , Medicamentos Herbarios Chinos/farmacocinética , Límite de Detección , Microextracción en Fase Líquida , Masculino , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Solventes/química , Comprimidos
12.
J Ethnopharmacol ; 253: 112658, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32035876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Many bioactive constituents of Chinese herbal medicines have poor oral bioavailability. Besides oral administration, herbal medicines in China are also prepared for parenteral administration. Unlike for intravenous route, little is known about the intramuscular pharmacokinetics of herbal compounds. To facilitate rational use of herbal medicine, it is important to better understand such intramuscular pharmacokinetics. AIM OF THE STUDY: Bioactive constituents of XueShuanTong (a lyophilized extract of Panax notoginseng roots, extensively used in treatment of ischemic heart and cerebrovascular diseases) predominantly comprise ginsenosides Rb1 and Rd of 20(S)-protopanaxadiol-type and ginsenosides Rg1, and Re, and notoginsenoside R1 of 20(S)-protopanaxatriol-type; these saponins are poorly absorbed from the gastrointestinal tract. This study aimed to compare intramuscular and intravenous pharmacokinetics of these ginsenosides after dosing XueShuanTong. METHODS: Pharmacokinetics of ginsenosides was assessed in human volunteers receiving an intramuscular injection or 1.5-h intravenous infusion of XueShuanTong, both at 150 mg/person, and the plasma and urine samples were analyzed by liquid chromatography/mass spectrometry. RESULTS: Like after intravenous administration, the unchanged saponins were the major circulating forms after intramuscular administration, while their metabolites were poorly detected. These ginsenosides exhibited intramuscular bioavailability of 100%-112%, relative to the respective intravenous data. Similar to that after intravenous infusion, the 20(S)-protopanaxadiol-type ginsenosides after the intramuscular injection exhibited notably longer terminal half-lives (46-106 h) than the 20(S)-protopanaxatriol-type ginsenosides (1.1-1.4 h). CONCLUSIONS: Intramuscular route might be an effective alternative to intravenous route for XueShuanTong, from the pharmacokinetic perspective.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Ginsenósidos/metabolismo , Administración Intravenosa , Adulto , Medicamentos Herbarios Chinos/administración & dosificación , Liofilización , Humanos , Inyecciones Intramusculares , Masculino , Panax notoginseng , Raíces de Plantas , Adulto Joven
13.
Bioorg Med Chem Lett ; 19(23): 6659-65, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19853440

RESUMEN

Thirty-two tetra-acylated derivatives of alisol A were synthesized and evaluated for their anti-hepatitis B virus (HBV) activities and cytotoxicities in vitro. Among the series of alisol A derivatives examined, five analogues were active against HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) secretion in HepG 2.2.15 cells. These results also provide interesting structure-activity relationships of tetra-acylalisol A derivatives. Compounds tetra-acetyl alisol A (A1), tetra-methoxyacetyl alisol A (A23), and tetra-ethoxyacetyl alisol A (A24) exhibited high activities against secretion of HBsAg with IC(50) values of 0.0048, 0.0044, and 0.014 mM, respectively, HBeAg with IC(50) values of 0.011, 0.012, and 0.018 mM, respectively, and remarkable selective index values SI(HBsAg)>333, SI(HBeAg)>145; SI(HBsAg)=209, SI(HBeAg)=77; and SI(HBsAg)>200, SI(HBeAg)>156, respectively. Additional studies in rats showed that compound A1 has favorable pharmacokinetic prosperities for further development purpose, with elimination half-time (t(1/2)) of 1.63 h and oral bioavailability (F) of 40.9%.


Asunto(s)
Antivirales/farmacología , Colestenonas/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Colestenonas/síntesis química , Colestenonas/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA