Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Med ; 22(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191448

RESUMEN

BACKGROUND: The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/ß-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS: Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS: Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from ß-catenin, preventing the dephosphorylation of ß-catenin and leading to the accumulation of cytosolic phospho-ß-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS: Targeting the LASS2 and ß-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.


Asunto(s)
Cisplatino , Esfingosina N-Aciltransferasa , Neoplasias de la Vejiga Urinaria , Humanos , Apoptosis , beta Catenina , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Esfingosina N-Aciltransferasa/metabolismo
2.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398904

RESUMEN

In the field of in situ measurement of high-temperature pressure, fiber-optic Fabry-Perot pressure sensors have been extensively studied and applied in recent years thanks to their compact size and excellent anti-interference and anti-shock capabilities. However, such sensors have high technological difficulty, limited pressure measurement range, and low sensitivity. This paper proposes a fiber-optic Fabry-Perot pressure sensor based on a membrane-hole-base structure. The sensitive core was fabricated by laser cutting technology and direct bonding technology of three-layer sapphire and develops a supporting large-cavity-length demodulation algorithm for the sensor's Fabry-Perot cavity. The sensor exhibits enhanced sensitivity, a simplified structure, convenient preparation procedures, as well as improved pressure resistance and anti-harsh environment capabilities, and has large-range pressure sensing capability of 0-10 MPa in the temperature range of 20-370 °C. The sensor sensitivity is 918.9 nm/MPa, the temperature coefficient is 0.0695 nm/(MPa∙°C), and the error over the full temperature range is better than 2.312%.

3.
Adv Sci (Weinh) ; 11(19): e2401254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483920

RESUMEN

Pancreatic fibrosis (PF) is primarily characterized by aberrant production and degradation modes of extracellular matrix (ECM) components, resulting from the activation of pancreatic stellate cells (PSCs) and the pathological cross-linking of ECM mediated by lysyl oxidase (LOX) family members. The excessively deposited ECM increases matrix stiffness, and the over-accumulated reactive oxygen species (ROS) induces oxidative stress, which further stimulates the continuous activation of PSCs and advancing PF; challenging the strategy toward normalizing ECM homeostasis for the regression of PF. Herein, ROS-responsive and Vitamin A (VA) decorated micelles (named LR-SSVA) to reverse the imbalanced ECM homeostasis for ameliorating PF are designed and synthesized. Specifically, LR-SSVA selectively targets PSCs via VA, thereby effectively delivering siLOXL1 and resveratrol (RES) into the pancreas. The ROS-responsive released RES inhibits the overproduction of ECM by eliminating ROS and inactivating PSCs, meanwhile, the decreased expression of LOXL1 ameliorates the cross-linked collagen for easier degradation by collagenase which jointly normalizes ECM homeostasis and alleviates PF. This research shows that LR-SSVA is a safe and efficient ROS-response and PSC-targeted drug-delivery system for ECM normalization, which will propose an innovative and ideal platform for the reversal of PF.


Asunto(s)
Matriz Extracelular , Fibrosis , Nanopartículas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Matriz Extracelular/metabolismo , Animales , Fibrosis/metabolismo , Resveratrol/farmacología , Humanos , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Vitamina A/metabolismo , Ratones , Ratas , Sistemas de Liberación de Medicamentos/métodos
4.
J Diabetes Res ; 2024: 5511454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736904

RESUMEN

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Asunto(s)
Adipogénesis , Lipasa , Animales , Masculino , Ratones , Aciltransferasas , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/metabolismo , Lipasa/metabolismo , Lipasa/genética , Lipogénesis , Lipólisis , Ratones Endogámicos C57BL , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteína Desacopladora 1/metabolismo
5.
BMJ Open ; 14(5): e085503, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754878

RESUMEN

INTRODUCTION: Lung isolation is primarily accomplished using a double-lumen tube (DLT) or bronchial blocker. A precise and accurate size of the DLT is a prerequisite for ensuring its accurate placement. Three-dimensional (3D) reconstruction technology can be used to accurately reproduce tracheobronchial structures to improve the accuracy of DLT size selection. Therefore, we have developed automatic comparison software for 3D reconstruction based on CT data (3DRACS). In this study, we aimed to evaluate the efficiency of using 3DRACS to select the DLT size for endobronchial intubation in comparison with using the 'blind' DLT intubation method to determine the DLT size, which is based on height and sex. METHODS AND ANALYSIS: This is a prospective, single-centre, double-blind randomised controlled trial. In total, 200 patients scheduled for lung resection using a left DLT will be randomly allocated to the 3D group or the control group at a 1:1 ratio. A 3DRACS will be used for the 3D group to determine the size of the DLT, while in the case of the control group, the size of the DLT will be determined according to patient height and sex. The primary outcome is the success rate of placement of the left DLT without fibreoptic bronchoscopy (FOB). The secondary outcomes include the following: successful intubation time, degree of pulmonary atrophy, grade of airway injury, oxygenation during one-lung ventilation, postoperative sore throat and hoarseness, and number of times FOB is used. ETHICS AND DISSEMINATION: Ethical approval has been obtained from our local ethics committee (approval number: SCCHEC-02-2022-155). Written informed consent will be obtained from all participants before randomisation, providing them with clear instructions about the purpose of the study. The results will be disseminated through peer-reviewed publications and conferences. TRIAL REGISTRATION NUMBER: NCT06258954.


Asunto(s)
Intubación Intratraqueal , Impresión Tridimensional , Adulto , Femenino , Humanos , Masculino , Broncoscopía/métodos , Método Doble Ciego , Diseño de Equipo , Intubación Intratraqueal/métodos , Intubación Intratraqueal/instrumentación , Ventilación Unipulmonar/métodos , Ventilación Unipulmonar/instrumentación , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Tomografía Computarizada por Rayos X
6.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940054

RESUMEN

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Asunto(s)
Adiponectina , Tejido Adiposo Pardo , Dieta Alta en Grasa , Glicoproteínas , Lipólisis , Animales , Masculino , Ratones , Aciltransferasas , Adipogénesis , Adiponectina/metabolismo , Adiponectina/genética , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Glicoproteínas/metabolismo , Resistencia a la Insulina , Lipasa/metabolismo , Lipasa/genética , Ratones Endogámicos C57BL , Perilipina-1/metabolismo , Perilipina-1/genética
7.
J Control Release ; 366: 732-745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242209

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.


Asunto(s)
Quistes , Fibrosis Pulmonar Idiopática , Nanopartículas , Humanos , Verteporfina , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA