Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 20(22): e2309501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38109067

RESUMEN

The development of lithium-based solid-state batteries (SSBs) has to date been hindered by the limited ionic conductivity of solid polymer electrolytes (SPEs), where nonsolvated Li-ions are difficult to migrate in a polymer framework at room temperature. Despite the improved cationic migration by traditional heating systems, they are far from practical applications of SSBs. Here, an innovative strategy of light-mediated energy conversion is reported to build photothermal-based SPEs (PT-SPEs). The results suggest that the nanostructured photothermal materials acting as a powerful light-to-heat converter enable heating within a submicron space, leading to a decreased Li+ migration barrier and a stronger solid electrolyte interface. Via in situ X-ray diffraction analysis and molecular dynamics simulation, it is shown that the generated heating effectively triggers the structural transition of SPEs from a highly crystalline to an amorphous state, that helps mediate lithium-ion transport. Using the assembled SSBs for exemplification, PT-SPEs function as efficient ion-transport media, providing outstanding capacity retention (96% after 150 cycles) and a stable charge/discharge capacity (140 mA g-1 at 1.0 C). Overall, the work provides a comprehensive picture of the Li-ion transport in solid polymer electrolytes and suggests that free volume may be critical to achieving high-performance solid-state batteries.

2.
J Am Chem Soc ; 145(4): 2243-2251, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580675

RESUMEN

Smart molecular actuators have become a cutting-edge theme due to their ability to convert chemical energy into mechanical energy under external stimulations. However, realizing actuation at the molecular level and elucidating the mechanisms for actuating still remain challenging. Herein, we design and fabricate a novel nanoscaled polyoxometalate-based humidity-responsive molecular actuator {Bi8Mo48} through the assembly of [Mo2O2S2]2+ units, transition metals, and flexible phosphonic acid ligands. {Bi8Mo48} exhibits a semi-flexible cage-like architecture with oxygen-rich surfaces and highly negative charges 72-. The nanoscaled molecular actuator shows reversible expansion and contraction behavior under humidity variations due to lattice expansion and contraction induced by hydrogen bonding and solvation interactions between {Bi8Mo48} and water molecules. Molecular dynamics simulation was further employed to study these processes, which provides a fundamental understanding for the mechanism of humidity actuation at the molecular level.

3.
Phys Chem Chem Phys ; 25(41): 28272-28281, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830226

RESUMEN

In this study, we employ coarse-grained molecular dynamics simulations to explore the microstructure of MSA (methanesulfonic acid)-type electroplating solution, containing Sn(MSA)2 as the primary salt, MSA as the stabilizer, amphiphilic alkylphenol ethoxylate (APEO) as surfactants and cinnamaldehyde (CA) as the brightener agents, as well as water as the solvent. Our simulation indicates that temperature variations can significantly affect the structural properties of the electroplating solution and the adsorption behavior of its key components onto the substrate. Specifically, at low temperatures, the primary salt ions aggregate into ionic clusters, and the amphiphilic APEO surfactants and CA molecules form micelles composed of hydrophobic cores and hydrophilic shells, which reduces the uniformity of the solution and hinders the adsorption of ions, CA and surfactants onto the substrate. Appropriately increasing the temperature can weaken the aggregation of these components in bulk solution due to the accelerated molecular movements and arouse their adsorption. However, on further increasing the temperature, the elevated kinetic energy of the components thoroughly overwhelms the adsorption interactions, and therefore, the ions, surfactants, and CA desorb from the substrate and redissolve into the solution. We systematically analyze the complex interactions between these components at different temperatures and clarify the mechanism of the non-monotonic dependence of adsorption strength on the temperature at the molecular level. Our simulations demonstrate that there is low-temperature scope for reprocessing/recycling and intermediate-temperature scope for substrate-adsorptions of the key components. This study confers insights into a fundamental understanding of the microscopic mechanism for electroplating and can provide guidance for the development of precise electroplatings.

4.
Soft Matter ; 18(8): 1603-1616, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080232

RESUMEN

In this study, we use molecular dynamics simulation to explore the structures of anionic and cationic polyelectrolytes in aqueous solutions. We first confirm the significantly stronger solvation effects of single anions compared to cations in water at the fixed ion radii, due to the reversal orientations of asymmetric dipolar H2O molecules around the ions. Based on this, we demonstrate that the solvation discrepancy of cations/anions and electrostatic correlations of ionic species can synergistically cause the nontrivial structural difference between single anionic and cationic polyelectrolytes. The cationic polyelectrolyte shows an extended structure whereas the anionic polyelectrolyte exhibits a collapsed structure, and their structural differences decline with increasing the counterion size. Furthermore, we corroborate that multiple cationic polyelectrolytes or multiple anionic polyelectrolytes can exhibit largely differential molecular architectures in aqueous solutions. In the solvation dominant regime, the polyelectrolyte solutions exhibit uniform structures; whereas, in the electrostatic correlation dominant regime, the polyelectrolyte solutions exhibit heterogeneous structures, in which the likely charged chains microscopically aggregate through counterion condensations. Increasing the intrinsic chain rigidity causes polyelectrolyte extension and hence moderately weakens the inter-chain clustering. Our work highlights the various, unique structures and molecular architectures of polyelectrolytes in solutions caused by the multi-body correlations between polyelectrolytes, counterions and asymmetric dipolar solvent molecules, which provides insights into the fundamental understanding of ion-containing polymers.

5.
Macromol Rapid Commun ; 43(14): e2200171, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35503906

RESUMEN

Polymer-grafted hairy nanoparticles (HNPs) that combine the unique properties of inorganic nanoparticles (NPs) and polymers are attractive building blocks for the layer-by-layer assembly of functional hybrid materials, but the adsorption behaviors of HNPs on substrates remain unclear. This article describes a systematic study on the adsorption behaviors of charged polymer-grafted HNPs on oppositely charged substrates in different solvent media via a combination of experiments and simulations. It is shown in simulations that the adsorption process of HNPs is associated with the release of counterions around charged polymers on HNPs, thus resulting in a higher energy barrier of NP adsorption than bare NPs without charged polymer tethers. This energy barrier decreases with decreasing the dielectricity of solvents or ionization degree of grafted polymers or increasing ionic strength of the solution. Furthermore, the theoretical prediction is confirmed in experiments by using a model system of poly(acrylic acid)-grafted silica NPs and poly(diallyldimethylammonium chloride)-modified wafers. The work provides guidance for the electrostatic assembly of HNPs into functional hybrid composites with applications in membranes, optical devices, and biomedicines.


Asunto(s)
Nanopartículas , Polímeros , Adsorción , Nanopartículas/química , Polímeros/química , Electricidad Estática , Propiedades de Superficie
6.
J Am Chem Soc ; 143(13): 5060-5070, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33770432

RESUMEN

Patchy colloidal nanoparticles are important for a broad range of applications, especially as building blocks for complex and functional structural materials, but the controllable generation of chemical patches on as-synthesized nanoparticles remains a challenge. This article describes a robust strategy for the scalable synthesis of high-quality patchy nanoparticles in high yield and solid content. A simple thermal treatment of a mixture of gold nanoparticles and thiol-terminated block-random copolymers in selected solvents produced a variety of patchy nanoparticles with a controlled morphology and number of polymeric patches (e.g., beanlike patch, one patch, two patches, three patches, multiple patches, and open-configuration patch). We show in experiments and simulations that the dynamic detachment/attachment of copolymers and the exchange of copolymers between the nanoparticle surface and free micelles in the solution-which are dictated by the architecture of copolymers-govern the formation of polymeric patches. This work not only offers an effective approach to patchy nanoparticles but also provides new insights into the phase behaviors of copolymers on nanoscale surfaces.

7.
Soft Matter ; 17(26): 6305-6314, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34132314

RESUMEN

We employ the coarse-grained molecular dynamics simulation to investigate the fundamental structural and dynamic properties of the ionic solution with and without the application of an external electric field. Our simulations, in which the solvent molecules are treated as Stockmayer fluids and the ions are modeled as spheres, can effectively account for the multi-body correlations between ion-ion, ion-dipole, and dipole-dipole interactions, which are often ignored by the mean-field theories or coarse-grained simulations based on a dielectric continuum. By focusing on the coupling between effects of ion solvation, electrostatic correlations and applied electric field, we highlight some nontrivial microscopic molecular features of the systems, such as the reorganization of the dipolar solvent, clustering of the ions, and diffusions of ions and dipolar solvent molecules. Particularly, our simulation indicates the nonmonotonic dependence of the ionic clustering and ion diffusion rates on the dipolar nature of the solvent molecules, as well as the amplification of these tendencies caused by the electric field application. This work provides insights into the fundamental understanding of physicochemical properties for ion-containing liquids and contributes to the design and development of ion-containing materials.

8.
Angew Chem Int Ed Engl ; 60(11): 6076-6085, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296135

RESUMEN

Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi12 -3 %, which showed a proton conductivity of 386 mS cm-1 at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi12 -3 % for direct methanol fuel cells reached to 432.7 mA cm-2 and 110.2 mW cm-2 , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.

9.
J Am Chem Soc ; 142(9): 4481-4492, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32069050

RESUMEN

Solid-state nanopores have shown special high potential in a label-free molecular assay, structure identification, and target-index at the single-molecular level, even though frustrating electrical baseline noise is still one of the major factors that limit the spatial resolution and signaling reliability of solid-state nanopores, especially in small target detection. Here we develop a significant and easy-operating noise-reduction approach via mixing organic solvents with high dielectric constants into a traditional aqueous electrolyte. The strategy is generally effective for pores made of different materials, such as the most commonly used conical glass (CGN) or SiNx. While the mechanism should be multisourced, MD simulations suggest the noise reduction may partially arise from the even ionic distribution caused by the addition of higher dielectric species. Among all solvents experimentally tested, the two with the highest dielectric constants, formamide and methylformamide, exhibit the best noise reduction effect for target detection of CGN. The power spectral density at the low-frequency limit is reduced by nearly 3 orders with the addition of 20% formamide. Our work qualifies the reliability of solid-state nanopores into much subtler scales of detection, such as dsDNAs under 100 bp. As a practical example, bare CGN is innovatively employed to perform in-situ tracking of trigger-responsive DNA machine forming oligomers.


Asunto(s)
ADN/química , Nanoporos , Formamidas/química , Vidrio/química , Simulación de Dinámica Molecular , Nanotecnología
10.
Soft Matter ; 13(40): 7239-7243, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28930354

RESUMEN

Using a hybrid simulation method that combines a lattice-Boltzmann approach for the flow and a molecular dynamics model for the polymer, we investigated the effect of solvent quality on the flow-induced polymer translocation through a nanopore. We demonstrate the nontrivial dependence of the translocation dynamics of polymers on the solvent quality, i.e., the enhancement in the polymer insolubility increases the critical velocity flux and shortens the translocation time. Accordingly, we propose a new strategy to separate polymers with different solubilities via their translocations in the nanopore by adjusting the velocity flux of the flow, which appears to be promising for the design of micro-scaled polymer separation devices.

11.
Soft Matter ; 12(11): 2851-7, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26879130

RESUMEN

We study the flow-induced translocation of the star polymers through a nanopore using a hybrid simulation method that incorporates a lattice-Boltzmann approach for the fluid into a molecular dynamics model for the polymer. Our simulation demonstrates the existence of an optimal forward arm number of the star polymers captured by the nanopore, and illustrates its significance in determining the critical velocity flux of the star polymer translocation through the nanopore. Importantly, we find that the critical velocity flux of the star polymers is independent of the arm polymerization degree, but exhibits a linear dependence on the arm number. Based on previous scaling arguments and our simulation results, we conclude a linear dependence of the critical velocity flux on the arm number of the star polymers, which can successfully describe the dynamics of the star polymer translocation. Our simulation results rationalize the experimental results for the dependence of the critical velocity flux on the arm polymerization degree and the arm number of the star polymers, which provide new insights for the characterization and the purification of the star polymers.

12.
Eur Phys J E Soft Matter ; 39(11): 109, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27853961

RESUMEN

We study the effects of the nanopore size on the flow-induced capture of the star polymer by a nanopore and the afterward translocation, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation demonstrates that the optimal forward arm number decreases slowly with the increase of the length of the nanopore. Compared to the minor effect of the length of the nanopore, the optimal forward arm number obviously increases with the increase of the width of the nanopore, which can clarify the current controversial issue for the optimal forward arm number between the theory and experiments. In addition, our results indicate that the critical velocity flux of the star polymer is independent of the nanopore size. Our work bridges the experimental results and the theoretical understanding, which can provide comprehensive insights for the characterization and the purification of the star polymers.

13.
J Chem Phys ; 144(17): 174903, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-27155652

RESUMEN

We study the flow-induced polymer translocation through a nanopore from a confining nanotube, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation illustrates that the critical velocity flux of the polymer linearly decreases with the decrease in the size of the confining nanotube, which corresponds well with our theoretical analysis based on the blob model of the polymer translocation. Moreover, by decreasing the size of the confining nanotube, we find a significantly favorable capture of the polymer near its ends, as well as a longer translocation time. Our results provide the computational and theoretical support for the development of nanotechnologies based on the ultrafiltration and the single-molecule sequencing.

14.
Soft Matter ; 11(18): 3566-71, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25807274

RESUMEN

We develop a new, rapid method for the lattice Monte Carlo simulation of ion-containing liquids that accounts for the effects of the reorganization of solvent dipoles under external electrostatic fields. Our results are in reasonable agreement with the analytical solutions to the dielectric continuum theory of Booth for single ions, ion pairs, and ionic cross-links. We also illustrate the substantial disparity between the dielectric functions for like and unlike charges on the nanometer scale. Our simulation rationalizes the experimental data for the dependence of the bulk dielectric value of water on ion concentrations in terms of saturated dipoles near ions.

15.
J Chem Phys ; 142(22): 224506, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-26071719

RESUMEN

We present an event-driven molecular dynamics study of glass formation in two-dimensional binary mixtures composed of hard disks and hard ellipses, where both types of particles have the same area. We demonstrate that characteristic glass-formation behavior appears upon compression under appropriate conditions in such systems. In particular, while a rotational glass transition occurs only for the ellipses, both types of particles undergo a kinetic arrest in the translational degrees of freedom at a single density. The translational dynamics for the ellipses is found to be faster than that for the disks within the same system, indicating that shape anisotropy promotes the translational motion of particles. We further examine the influence of mixture's composition and aspect ratio on the glass formation. For the mixtures with an ellipse aspect ratio of k = 2, both translational and rotational glass transition densities decrease with increasing the disk concentration at a similar rate, and hence, the two glass transitions remain close to each other at all concentrations investigated. By elevating k, however, the rotational glass transition density diminishes at a faster rate than the translational one, leading to the formation of an orientational glass for the ellipses between the two transitions. Our simulations imply that mixtures of particles with different shapes emerge as a promising model for probing the role of particle shape in determining the properties of glass-forming liquids. Furthermore, our work illustrates the potential of using knowledge concerning the dependence of glass-formation properties on mixture's composition and particle shape to assist in the rational design of amorphous materials.

16.
Eur Biophys J ; 43(8-9): 377-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24972687

RESUMEN

We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a ternary mixed fluid membrane containing neutral (phosphatidylcholine, PC), monovalent (phosphatidylserine, PS), and multivalent (phosphatidylinositol, PIP2) anionic lipids. We systematically explore the influences of polyelectrolyte chain length, polyelectrolyte charge density, polyelectrolyte total charge amount, and salt solution ionic strength on the static and dynamic properties of different anionic lipid species. Our results show that the multivalent PIP2 lipids dominate the polyelectrolyte-membrane interaction and competitively inhibit polyelectrolyte-PS binding. When the total charge amount of the polyelectrolyte is less than that of the local oppositely charged PIP2 lipids, the polyelectrolyte can drag the bound multivalent lipids to diffuse on the membrane, but cannot interact with the PS lipids. Under this condition, the diffusion behaviors of the polyelectrolyte closely follow the prediction of the Rouse model, and the polyelectrolyte chain properties determine the adsorption amount, concentration gradients, and hierarchical mobility of the bound PIP2 lipids. However, when the total charge amount of the polyelectrolyte is larger than that of the local PIP2 lipids, the polyelectrolyte further binds the PS lipids around the polyelectrolyte-PIP2 complex to achieve local electrical neutrality. In this condition, parts of the polyelectrolyte desorb from the membrane and show faster mobility, and the bound PS presents much faster mobility than the segregated PIP2. This work provides an explanation for heterogeneity formation in different anionic lipids induced by polyelectrolyte adsorption.


Asunto(s)
Glicerofosfolípidos/química , Glicerofosfolípidos/metabolismo , Modelos Moleculares , Método de Montecarlo , Adsorción , Difusión , Conformación Molecular
17.
Eur Phys J E Soft Matter ; 37(8): 27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25143187

RESUMEN

Monte Carlo simulation is employed to investigate the interaction between a polyelectrolyte and a fluid mixed membrane containing neutral (phosphatidyl-choline, PC), monovalent anionic (phosphatidylserine, PS), and multivalent anionic (phosphatidylinositol, PIP2) lipids. The effects of the intrinsic polyelectrolyte rigidity and solution ionic strength on the lateral rearrangement and dynamics of different anionic lipid species are systematically studied. Our results show that, the increase of polyelectrolyte chain rigidity reduces the loss of polyelectrolyte conformational entropy and the energy gains in electrostatic interaction, but raises the demixing entropy loss of the segregated anionic lipids. Therefore, the polyelectrolyte/membrane adsorption strength exhibits a non-monotonic dependence on the polyelectrolyte rigid parameter k ang, and there exists a certain optimal k ang for which the adsorption strength is maximal. Because the less loss of chain conformational entropy dominates the increase of the demixing entropy loss of the segregated anionic lipids and the decreases of the electrostatic energy gains, the semiflexible polyelectrolyte adsorbs onto the membrane more firmly than the flexible one. Whereas, for the adsorption of rigid polyelectrolyte, larger anionic lipid demixing entropy loss and less energy gain in the electrostatic interaction dominate over the decrease of the polyelectrolyte conformation entropy loss, leading to the desorption of the chain from the membrane. By decreasing the ionic concentration of the salt solution, the certain optimal k ang shifts to larger values. The cooperative effects of the adsorbing polyelectrolyte beads determine the concentration gradients and hierarchical mobility of the bound anionic lipids, as well as the polyelectrolyte dynamics.


Asunto(s)
Entropía , Membrana Dobles de Lípidos/química , Adsorción , Electrólitos/química , Fenómenos Mecánicos , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilserinas/química , Electricidad Estática
18.
Nat Commun ; 15(1): 107, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167880

RESUMEN

Bacteria-associated infections and thrombosis, particularly catheter-related bloodstream infections and catheter-related thrombosis, are life-threatening complications. Herein, we utilize a concise assembly of heparin sodium with organosilicon quaternary ammonium surfactant to fabricate a multifunctional coating complex. In contrast to conventional one-time coatings, the complex attaches to medical devices with arbitrary shapes and compositions through a facile dipping process and further forms robust coatings to treat catheter-related bloodstream infections and thrombosis simultaneously. Through their robustness and adaptively dissociation, coatings not only exhibit good stability under extreme conditions but also significantly reduce thrombus adhesion by 60%, and shows broad-spectrum antibacterial activity ( > 97%) in vitro and in vivo. Furthermore, an ex vivo rabbit model verifies that the coated catheter has the potential to prevent catheter-related bacteremia during implantation. This substrate-independent and portable long-lasting multifunctional coating can be employed to meet the increasing clinical demands for combating catheter-related bloodstream infections and thrombosis.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Trombosis , Animales , Conejos , Heparina/farmacología , Catéteres/microbiología , Antibacterianos/farmacología , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
19.
Adv Sci (Weinh) ; 11(25): e2401952, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647398

RESUMEN

The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.

20.
J Phys Chem B ; 127(50): 10903-10911, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38061758

RESUMEN

Liquid-liquid phase separation (LLPS) is a common stimulus-responsive phenomenon widely studied and applied in constructing intelligent systems such as microfluidic valves, smart windows, and biosensors. However, LLPS in an aqueous solution has limited applicability confined to a narrow temperature range within 0-100 °C. In addition, for easy exploitation of thermoresponsive behavior, phase separation must be stable and accurately predictable under varying conditions. This study proposes a gel system exhibiting UCST phase behavior using ionic liquids (ILs) and hydrophilic polymers, whose phase transition temperature can be linearly tuned within a wide range (from subzero to over 100 °C) by varying the mixing ratio of ILs in their blends. Similar to the mixing of ILs with structurally similar cations, mixing ILs containing different anions proved to be an effective ideal random mixing method based on experimental results and molecular dynamics simulations. This mixing mechanism of ILs accounts for the linear regulation of the UCST of the ionogels when the mixing ratio of ILs in their blends varies. Moreover, the unique feature of ILs was further demonstrated using other hydrophilic polymer networks and multiple combinations of ILs, suggesting the generality of this strategy for UCST regulation in the ionogels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA