Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 134(3)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33468626

RESUMEN

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias , Pancreatitis Crónica , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
2.
Biochim Biophys Acta ; 1843(2): 464-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321771

RESUMEN

Transformed and tumoral cells share the characteristic of being able to proliferate even when external calcium concentration is very low. We have investigated whether Human Embryonic Kidney 293 cells, human hepatoma cell Huh-7 and HeLa cells were able to proliferate when kept 72h in complete culture medium without external calcium. Our data showed that cell proliferation rate was similar over a range of external calcium concentration (2µM to 1.8mM). Incubation in the absence of external calcium for 72h had no significant effect on endoplasmic reticulum (ER) Ca(2+) contents but resulted in a significant decrease in cytosolic free calcium concentration in all 3 cell types. Cell proliferation rates were dependent on Orai1 and Orai3 expression levels in HEK293 and HeLa cells. Silencing Orai1 or Orai3 resulted in a 50% reduction in cell proliferation rate. Flow cytometry analysis showed that Orai3 induced a small but significant increase in cell number in G2/M phase. RO-3306, a cdk-1 inhibitor, induced a 90% arrest in G2/M reversible in less than 15min. Our data showed that progression through G2/M phase after release from RO-3306-induced cell cycle arrest was slower in both Orai1 and Orai3 knock-downs. Overexpressing Orai1, Orai3 and the dominant negative non-permeant mutants E106Q-Orai1 and E81Q-Orai3 induced a 50% increase in cell proliferation rate in HEK293 cells. Our data clearly demonstrated that Orai1 and Orai3 proteins are more important than calcium influx to control cell proliferation in some cell lines and that this process is probably independent of ICRAC and Iarc.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Ciclo Celular , Proliferación Celular , ADN/metabolismo , Regulación hacia Abajo , Citometría de Flujo , Células HEK293 , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Proteína ORAI1
3.
Luminescence ; 28(3): 308-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22696448

RESUMEN

An adenosine triphosphate (ATP) bioluminescence-based protocol was tested to assess the viability of fungal species in old documents damaged by foxing. Foxing appears as scattered yellow brownish-red stains, damaging the aesthetics of documents and their long-term readability. In the field of cultural heritage conservation, the debate over the mechanism of foxing is ongoing. Previous studies found evidence of mold-like structures in some coloured areas; however, many species have not yet been identified and their role in the phenomenon is not understood. To better understand their involvement in this type of paper decay, we focused our attention first on their viability. We demonstrated the reliability and sensitivity of the ATP bioluminescence assay compared with conventional methods based on cultivation, which has rarely given rise to in vitro growth from foxed papers. From nine books dating back from the 19th and 20th centuries, the mean ATP amount of foxed spots ranged from 0.29 to 3.63 ng/cm(2), suggesting the presence of strains inside the brownish spots and providing evidence of their viability. Outside the spots, ATP content was considered negligible, with a mean ATP amount of 0 to 0.03 ng/cm(2). ATP assay appears to be a useful and robust method for the detection and quantification of viable elements in foxing spots.


Asunto(s)
Adenosina Trifosfato/química , Hongos/química , Hongos/crecimiento & desarrollo , Mediciones Luminiscentes/métodos , Adenosina Trifosfato/metabolismo , Hongos/metabolismo , Historia del Siglo XIX , Historia del Siglo XX , Viabilidad Microbiana , Papel/historia
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1647-51, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21139216

RESUMEN

Zebrafish (Danio rerio) are an important developmental and embryological model given the optical clarity of the embryos and larvae, which permits real-time viewing of developing pathologies. More recently, a broader scope for these vertebrates to model a range of human diseases, including some cancers, has been indicated. Zebrafish Drgal1-L2 has been identified as an orthologue of mammalian galectin-1, which is is a carbohydrate-binding protein that exhibits ß-galactoside-binding specificity and which is overexpressed by many aggressive human cancers. This study describes the cloning, expression in Escherichia coli, purification and crystallization of recombinant Drgal1-L2 protein in the presence of lactose (ligand). X-ray diffraction data from these novel crystals of zebrafish Drgal1-L2 were collected to a resolution of 1.5 Šusing a synchrotron-radiation source, enabling their characterization.


Asunto(s)
Galectinas/química , Proteínas de Pez Cebra/química , Pez Cebra/metabolismo , Animales , Cromatografía de Afinidad , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Humanos , Lactosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA