RESUMEN
Mediterranean spring ecosystems are unique habitats at the interface between surface water and groundwater. These ecosystems support a remarkable array of biodiversity and provide important ecological functions and ecosystem services. Spring ecosystems are influenced by abiotic, biotic, and anthropogenic factors such as the lithology of their draining aquifers, their climate, and the land use of their recharge area, all of which affect the water chemistry of the aquifer and the spring discharges. One of the most relevant characteristics of spring ecosystems is the temporal stability of environmental conditions, including physicochemical features of the spring water, across seasons and years. This stability allows a wide range of species to benefit from these ecosystems (particularly during dry periods), fostering an unusually high number of endemic species. However, global change poses important threats to these freshwater ecosystems. Changes in temperature, evapotranspiration, and precipitation patterns can alter the water balance and chemistry of spring water. Eutrophication due to agricultural practices and emergent pollutants, such as pharmaceuticals, personal care products, and pesticides, is also a growing concern for the preservation of spring biodiversity. Here, we provide a synthesis of the main characteristics and functioning of Mediterranean spring ecosystems. We then describe their ecological value and biodiversity patterns and highlight the main risks these ecosystems face. Moreover, we identify existing knowledge gaps to guide future research in order to fully uncover the hidden biodiversity within these habitats and understand the main drivers that govern them. Finally, we provide a brief summary of recommended actions that should be taken to effectively manage and preserve Mediterranean spring ecosystems for future generations. Even though studies on Mediterranean spring ecosystems are still scarce, our review shows there are sufficient data to conclude that their future viability as functional ecosystems is under severe threat.
Asunto(s)
Ecosistema , Manantiales Naturales , Refugio de Fauna , Biodiversidad , AguaRESUMEN
Perfluoroalkyl substances (PFAS) are known to bioaccumulate and trigger adverse effects in marine birds. This study develops an extraction and analytical methodology for the target/untargeted analysis of PFAS in eggs of Yellow-legged gull (Larus michahellis) and Audouin's gull (Larus audouinii) and blood of Greater flamingo (Phoenicopterus roseus), which are used as bioindicators of organic chemical pollution. Samples were extracted by ultrasonication with acetonitrile and cleaned-up with activated carbon, and analysis was performed by ultra-high-performance liquid chromatography coupled to a quadrupole-time of flight mass spectrometer (UHPLC-Q-TOF) with negative electrospray ionization. Data-independent acquisition (DIA) was performed through full-scan acquisition to obtain MS1 at 6 eV and MS2 at 30 eV. In a first step, quantitative analysis of 25 PFAS was performed using 9 mass-labelled internal standard PFAS and quality parameters of the method developed are provided. Then, an untargeted screening workflow is proposed using the high-resolution PFAS library database from NORMAN to identify new chemicals through accurate mass measurement of MS1 and MS2 signals. The method permitted to detect several PFAS at concentrations ranging from 0.45 to 55.2 ng/g wet weight in gull eggs and from 0.75 to 125 ng/mL wet weight in flamingos' blood, with PFOS, PFOA, PFNA, PFUdA, PFTrDA, PFDoA, PFHxS and PFHpA the main compounds detected. In addition, perfluoro-p-ethylcyclohexylsulfonic acid (PFECHS, CAS number 646-83-3) and 2-(perfluorohexyl)ethanol (6:2 FTOH, CAS number 647-42-7) were tentatively identified. The developed UHPLC-Q-TOF target/untargeted analytical approach increases the scope of PFAS analysis, enabling a better assessment on contaminant exposure and promoting the use of bird species as bioindicators of chemical pollution.