Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500798

RESUMEN

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Proteínas Quinasas/genética , Proteoma/análisis , Animales , Antineoplásicos/uso terapéutico , Bencenosulfonatos/uso terapéutico , Bencimidazoles/uso terapéutico , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Sorafenib
2.
J Biol Chem ; 299(12): 105418, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923138

RESUMEN

Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.


Asunto(s)
Melanoma , Proteínas Serina-Treonina Quinasas , Neoplasias de la Úvea , Humanos , Línea Celular Tumoral , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/enzimología , Neoplasias de la Úvea/genética
3.
NMR Biomed ; 37(8): e5145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488205

RESUMEN

Noninvasive extracellular pH (pHe) mapping with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) using MR spectroscopic imaging (MRSI) has been demonstrated on 3T clinical MR scanners at 8 × 8 × 10 mm3 spatial resolution and applied to study various liver cancer treatments. Although pHe imaging at higher resolution can be achieved by extending the acquisition time, a postprocessing method to increase the resolution is preferable, to minimize the duration spent by the subject in the MR scanner. In this work, we propose to improve the spatial resolution of pHe mapping with BIRDS by incorporating anatomical information in the form of multiparametric MRI and using an unsupervised deep-learning technique, Deep Image Prior (DIP). Specifically, we used high-resolution T 1 , T 2 , and diffusion-weighted imaging (DWI) MR images of rabbits with VX2 liver tumors as inputs to a U-Net architecture to provide anatomical information. U-Net parameters were optimized to minimize the difference between the output super-resolution image and the experimentally acquired low-resolution pHe image using the mean-absolute error. In this way, the super-resolution pHe image would be consistent with both anatomical MR images and the low-resolution pHe measurement from the scanner. The method was developed based on data from 49 rabbits implanted with VX2 liver tumors. For evaluation, we also acquired high-resolution pHe images from two rabbits, which were used as ground truth. The results indicate a good match between the spatial characteristics of the super-resolution images and the high-resolution ground truth, supported by the low pixelwise absolute error.


Asunto(s)
Neoplasias Hepáticas , Imágenes de Resonancia Magnética Multiparamétrica , Animales , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Conejos , Aprendizaje Profundo , Espacio Extracelular/diagnóstico por imagen , Espacio Extracelular/metabolismo , Imagen de Difusión por Resonancia Magnética
4.
J Biol Chem ; 298(9): 102367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35963436

RESUMEN

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Asunto(s)
Arginina , Desoxiadenosinas , Purina-Nucleósido Fosforilasa , Arginina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Humanos , Metionina/metabolismo , Metilación , Poliaminas , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Eliminación de Secuencia , Tionucleósidos
5.
Am J Physiol Heart Circ Physiol ; 325(3): H492-H509, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417870

RESUMEN

We present a detailed analysis of regional myocardial blood flow and work to better understand the effects of coronary stenoses and low-dose dobutamine stress. Our analysis is based on a unique open-chest model in anesthetized canines that features invasive hemodynamic monitoring, microsphere-based blood flow analysis, and an extensive three-dimensional (3-D) sonomicrometer array that provides multiaxial deformational assessments in the ischemic, border, and remote vascular territories. We use this model to construct regional pressure-strain loops for each territory and quantify the loop subcomponent areas that reflect myocardial work contributing to the ejection of blood and wasted work that does not. We demonstrate that reductions in coronary blood flow markedly alter the shapes and temporal relationships of pressure-strain loops, as well as the magnitudes of their total and subcomponent areas. Specifically, we show that moderate stenoses in the mid-left anterior descending coronary artery decrease regional midventricle myocardial work indices and substantially increase indices of wasted work. In the midventricle, these effects are most pronounced along the radial and longitudinal axes, with more modest effects along the circumferential axis. We further demonstrate that low-dose dobutamine can help to restore or even improve function, but often at the cost of increased wasted work. This detailed, multiaxial analysis provides unique insight into the physiology and mechanics of the heart in the presence of ischemia and low-dose dobutamine, with potential implications in many areas, including the detection and characterization of ischemic heart disease and the use of inotropic support for low cardiac output.NEW & NOTEWORTHY Our unique experimental model assesses cardiac pressure-strain relationships along multiple axes in multiple regions. We demonstrate that moderate coronary stenoses decrease regional myocardial work and increase wasted work and that low-dose dobutamine can help to restore myocardial function, but often with further increases in wasted work. Our findings highlight the significant directional variation of cardiac mechanics and demonstrate potential advantages of pressure-strain analyses over traditional, purely deformational measures, especially in characterizing physiological changes related to dobutamine.


Asunto(s)
Estenosis Coronaria , Isquemia Miocárdica , Animales , Perros , Dobutamina/farmacología , Miocardio , Corazón , Circulación Coronaria , Contracción Miocárdica
6.
Mol Cell Proteomics ; 19(12): 2068-2090, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994315

RESUMEN

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.


Asunto(s)
Neoplasias Endometriales/enzimología , Espectrometría de Masas , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteómica , Apoptosis/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/genética , Neoplasias Endometriales/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Humanos , Neoplasias Quísticas, Mucinosas y Serosas/patología , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteogenómica , Empalme del ARN/genética , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Análisis de Supervivencia , Neoplasias Uterinas/patología
7.
Annu Rev Biomed Eng ; 22: 127-153, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32169002

RESUMEN

Sparsity is a powerful concept to exploit for high-dimensional machine learning and associated representational and computational efficiency. Sparsity is well suited for medical image segmentation. We present a selection of techniques that incorporate sparsity, including strategies based on dictionary learning and deep learning, that are aimed at medical image segmentation and related quantification.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Perros , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Aprendizaje Automático , Modelos Teóricos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos
8.
Eur Radiol ; 31(7): 4981-4990, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33409782

RESUMEN

OBJECTIVES: To train a deep learning model to differentiate between pathologically proven hepatocellular carcinoma (HCC) and non-HCC lesions including lesions with atypical imaging features on MRI. METHODS: This IRB-approved retrospective study included 118 patients with 150 lesions (93 (62%) HCC and 57 (38%) non-HCC) pathologically confirmed through biopsies (n = 72), resections (n = 29), liver transplants (n = 46), and autopsies (n = 3). Forty-seven percent of HCC lesions showed atypical imaging features (not meeting Liver Imaging Reporting and Data System [LI-RADS] criteria for definitive HCC/LR5). A 3D convolutional neural network (CNN) was trained on 140 lesions and tested for its ability to classify the 10 remaining lesions (5 HCC/5 non-HCC). Performance of the model was averaged over 150 runs with random sub-sampling to provide class-balanced test sets. A lesion grading system was developed to demonstrate the similarity between atypical HCC and non-HCC lesions prone to misclassification by the CNN. RESULTS: The CNN demonstrated an overall accuracy of 87.3%. Sensitivities/specificities for HCC and non-HCC lesions were 92.7%/82.0% and 82.0%/92.7%, respectively. The area under the receiver operating curve was 0.912. CNN's performance was correlated with the lesion grading system, becoming less accurate the more atypical imaging features the lesions showed. CONCLUSION: This study provides proof-of-concept for CNN-based classification of both typical- and atypical-appearing HCC lesions on multi-phasic MRI, utilizing pathologically confirmed lesions as "ground truth." KEY POINTS: • A CNN trained on atypical appearing pathologically proven HCC lesions not meeting LI-RADS criteria for definitive HCC (LR5) can correctly differentiate HCC lesions from other liver malignancies, potentially expanding the role of image-based diagnosis in primary liver cancer with atypical features. • The trained CNN demonstrated an overall accuracy of 87.3% and a computational time of < 3 ms which paves the way for clinical application as a decision support instrument.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
9.
Proc IEEE Inst Electr Electron Eng ; 109(5): 820-838, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-37786449

RESUMEN

Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.

10.
Magn Reson Med ; 83(5): 1553-1564, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31691371

RESUMEN

PURPOSE: To demonstrate feasibility of developing a noninvasive extracellular pH (pHe ) mapping method on a clinical MRI scanner for molecular imaging of liver cancer. METHODS: In vivo pHe mapping has been demonstrated on preclinical scanners (e.g., 9.4T, 11.7T) with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), where the pHe readout by 3D chemical shift imaging (CSI) depends on hyperfine shifts emanating from paramagnetic macrocyclic chelates like TmDOTP5- which upon extravasation from blood resides in the extracellular space. We implemented BIRDS-based pHe mapping on a clinical 3T Siemens scanner, where typically diamagnetic 1 H signals are detected using millisecond-long radiofrequency (RF) pulses, and 1 H shifts span over ±10 ppm with long transverse (T2 , 102 ms) and longitudinal (T1 , 103 ms) relaxation times. We modified this 3D-CSI method for ultra-fast acquisition with microsecond-long RF pulses, because even at 3T the paramagnetic 1 H shifts of TmDOTP5- have millisecond-long T2 and T1 and ultra-wide chemical shifts (±200 ppm) as previously observed in ultra-high magnetic fields. RESULTS: We validated BIRDS-based pH in vitro with a pH electrode. We measured pHe in a rabbit model for liver cancer using VX2 tumors, which are highly vascularized and hyperglycolytic. Compared to intratumoral pHe (6.8 ± 0.1; P < 10-9 ) and tumor's edge pHe (6.9 ± 0.1; P < 10-7 ), liver parenchyma pHe was significantly higher (7.2 ± 0.1). Tumor localization was confirmed with histopathological markers of necrosis (hematoxylin and eosin), glucose uptake (glucose transporter 1), and tissue acidosis (lysosome-associated membrane protein 2). CONCLUSION: This work demonstrates feasibility and potential clinical translatability of high-resolution pHe mapping to monitor tumor aggressiveness and therapeutic outcome, all to improve personalized cancer treatment planning.


Asunto(s)
Técnicas Biosensibles , Neoplasias Hepáticas , Animales , Espacio Extracelular , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Conejos
11.
J Vasc Interv Radiol ; 31(10): 1706-1716.e1, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32684417

RESUMEN

PURPOSE: To investigate toxicity, efficacy, and microenvironmental effects of idarubicin-loaded 40-µm and 100-µm drug-eluting embolic (DEE) transarterial chemoembolization in a rabbit liver tumor model. MATERIALS AND METHODS: Twelve male New Zealand White rabbits with orthotopically implanted VX2 liver tumors were assigned to DEE chemoembolization with 40-µm (n = 5) or 100-µm (n = 4) ONCOZENE microspheres or no treatment (control; n = 3). At 24-72 hours postprocedurally, multiparametric magnetic resonance (MR) imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and biosensor imaging of redundant deviation in shifts (BIRDS) was performed to assess extracellular pH (pHe), followed by immediate euthanasia. Laboratory parameters and histopathologic ex vivo analysis included fluorescence confocal microscopy and immunohistochemistry. RESULTS: DCE MR imaging demonstrated a similar degree of devascularization of embolized tumors for both microsphere sizes (mean arterial enhancement, 8% ± 12 vs 36% ± 51 in controls; P = .07). Similarly, DWI showed postprocedural increases in diffusion across the entire lesion (apparent diffusion coefficient, 1.89 × 10-3 mm2/s ± 0.18 vs 2.34 × 10-3 mm2/s ± 0.18 in liver; P = .002). BIRDS demonstrated profound tumor acidosis at baseline (mean pHe, 6.79 ± 0.08 in tumor vs 7.13 ± 0.08 in liver; P = .02) and after chemoembolization (6.8 ± 0.06 in tumor vs 7.1 ± 0.04 in liver; P = .007). Laboratory and ex vivo analyses showed central tumor core penetration and greater increase in liver enzymes for 40-µm vs 100-µm microspheres. Inhibition of cell proliferation, intratumoral hypoxia, and limited idarubicin elution were equally observed with both sphere sizes. CONCLUSIONS: Noninvasive multiparametric MR imaging visualized chemoembolic effects in tumor and tumor microenvironment following DEE chemoembolization. Devascularization, increased hypoxia, coagulative necrosis, tumor acidosis, and limited idarubicin elution suggest ischemia as the predominant therapeutic mechanism. Substantial size-dependent differences indicate greater toxicity with the smaller microsphere diameter.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Quimioembolización Terapéutica , Idarrubicina/administración & dosificación , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Microambiente Tumoral , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Imagen de Difusión por Resonancia Magnética , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Microesferas , Tomografía Computarizada Multidetector , Tamaño de la Partícula , Conejos
12.
Cardiovasc Ultrasound ; 18(1): 2, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941514

RESUMEN

BACKGROUND: Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships. METHODS: Sonomicrometers (16 crystals) were implanted in epicardial and endocardial pairs across the anterior myocardium of anesthetized open chest dogs (n = 7) to form three adjacent cubes representing the ischemic, border, and remote regions, as defined by their relative locations to a hydraulic occluder on the mid-left anterior descending coronary artery (LAD). Additional cardiac (n = 3) and extra-cardiac (n = 3) reference crystals were placed to define the cardiac axes and aid image registration. 2D short axis echocardiograms, sonometric data, and microsphere blood flow data were acquired at baseline and in the presence of mild and moderate LAD stenoses, both before and during low-dose dobutamine stress (5 µg/kg/min). Regional end-systolic 2D STE radial and circumferential strains were calculated with commercial software (EchoInsight) and compared to those determined by sonomicrometry and to microsphere blood flow measurements. Post-systolic indices (PSIs) were also calculated for radial and circumferential strains. RESULTS: Low-dose dobutamine augmented both strain and flow in the presence of mild and moderate stenoses. Regional 2D STE strains correlated moderately with strains assessed by sonomicrometry (Rradial = 0.56, p < 0.0001; Rcirc = 0.55, p < 0.0001) and with regional flow quantities (Rradial = 0.61, Rcirc = 0.63). Overall, correspondence between 2D STE and sonomicrometry was better in the circumferential direction (Bias ± 1.96 SD: - 1.0 ± 8.2% strain, p = 0.06) than the radial direction (5.7 ± 18.3%, p < 0.0001). Mean PSI values were greatest in low flow conditions and normalized with low-dose dobutamine. CONCLUSIONS: 2D STE identifies changes in regional end-systolic circumferential and radial strain produced by mild and moderate coronary stenoses and low-dose dobutamine stress. Regional 2D STE end-systolic strain measurements correlate modestly with regional sonomicrometer strain and microsphere flow measurements.


Asunto(s)
Circulación Coronaria/fisiología , Estenosis Coronaria/diagnóstico , Vasos Coronarios/fisiopatología , Ecocardiografía de Estrés/métodos , Contracción Miocárdica/fisiología , Flujo Sanguíneo Regional/fisiología , Animales , Estenosis Coronaria/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Modelos Animales de Enfermedad , Perros , Sístole
13.
Eur Radiol ; 29(7): 3338-3347, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31016442

RESUMEN

OBJECTIVES: To develop and validate a proof-of-concept convolutional neural network (CNN)-based deep learning system (DLS) that classifies common hepatic lesions on multi-phasic MRI. METHODS: A custom CNN was engineered by iteratively optimizing the network architecture and training cases, finally consisting of three convolutional layers with associated rectified linear units, two maximum pooling layers, and two fully connected layers. Four hundred ninety-four hepatic lesions with typical imaging features from six categories were utilized, divided into training (n = 434) and test (n = 60) sets. Established augmentation techniques were used to generate 43,400 training samples. An Adam optimizer was used for training. Monte Carlo cross-validation was performed. After model engineering was finalized, classification accuracy for the final CNN was compared with two board-certified radiologists on an identical unseen test set. RESULTS: The DLS demonstrated a 92% accuracy, a 92% sensitivity (Sn), and a 98% specificity (Sp). Test set performance in a single run of random unseen cases showed an average 90% Sn and 98% Sp. The average Sn/Sp on these same cases for radiologists was 82.5%/96.5%. Results showed a 90% Sn for classifying hepatocellular carcinoma (HCC) compared to 60%/70% for radiologists. For HCC classification, the true positive and false positive rates were 93.5% and 1.6%, respectively, with a receiver operating characteristic area under the curve of 0.992. Computation time per lesion was 5.6 ms. CONCLUSION: This preliminary deep learning study demonstrated feasibility for classifying lesions with typical imaging features from six common hepatic lesion types, motivating future studies with larger multi-institutional datasets and more complex imaging appearances. KEY POINTS: • Deep learning demonstrates high performance in the classification of liver lesions on volumetric multi-phasic MRI, showing potential as an eventual decision-support tool for radiologists. • Demonstrating a classification runtime of a few milliseconds per lesion, a deep learning system could be incorporated into the clinical workflow in a time-efficient manner.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Aprendizaje Profundo , Neoplasias Hepáticas/diagnóstico por imagen , Redes Neurales de la Computación , Adulto , Anciano , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Conductos Biliares Intrahepáticos , Colangiocarcinoma/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estados Unidos
14.
Eur Radiol ; 29(7): 3348-3357, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093705

RESUMEN

OBJECTIVES: To develop a proof-of-concept "interpretable" deep learning prototype that justifies aspects of its predictions from a pre-trained hepatic lesion classifier. METHODS: A convolutional neural network (CNN) was engineered and trained to classify six hepatic tumor entities using 494 lesions on multi-phasic MRI, described in Part 1. A subset of each lesion class was labeled with up to four key imaging features per lesion. A post hoc algorithm inferred the presence of these features in a test set of 60 lesions by analyzing activation patterns of the pre-trained CNN model. Feature maps were generated that highlight regions in the original image that correspond to particular features. Additionally, relevance scores were assigned to each identified feature, denoting the relative contribution of a feature to the predicted lesion classification. RESULTS: The interpretable deep learning system achieved 76.5% positive predictive value and 82.9% sensitivity in identifying the correct radiological features present in each test lesion. The model misclassified 12% of lesions. Incorrect features were found more often in misclassified lesions than correctly identified lesions (60.4% vs. 85.6%). Feature maps were consistent with original image voxels contributing to each imaging feature. Feature relevance scores tended to reflect the most prominent imaging criteria for each class. CONCLUSIONS: This interpretable deep learning system demonstrates proof of principle for illuminating portions of a pre-trained deep neural network's decision-making, by analyzing inner layers and automatically describing features contributing to predictions. KEY POINTS: • An interpretable deep learning system prototype can explain aspects of its decision-making by identifying relevant imaging features and showing where these features are found on an image, facilitating clinical translation. • By providing feedback on the importance of various radiological features in performing differential diagnosis, interpretable deep learning systems have the potential to interface with standardized reporting systems such as LI-RADS, validating ancillary features and improving clinical practicality. • An interpretable deep learning system could potentially add quantitative data to radiologic reports and serve radiologists with evidence-based decision support.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Aprendizaje Profundo , Neoplasias Hepáticas/diagnóstico por imagen , Redes Neurales de la Computación , Adulto , Anciano , Algoritmos , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Conductos Biliares Intrahepáticos , Colangiocarcinoma/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Prueba de Estudio Conceptual , Estudios Retrospectivos
15.
J Vasc Interv Radiol ; 29(6): 850-857.e1, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29548875

RESUMEN

PURPOSE: To use magnetic resonance (MR) imaging and clinical patient data to create an artificial intelligence (AI) framework for the prediction of therapeutic outcomes of transarterial chemoembolization by applying machine learning (ML) techniques. MATERIALS AND METHODS: This study included 36 patients with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization. The cohort (age 62 ± 8.9 years; 31 men; 13 white; 24 Eastern Cooperative Oncology Group performance status 0, 10 status 1, 2 status 2; 31 Child-Pugh stage A, 4 stage B, 1 stage C; 1 Barcelona Clinic Liver Cancer stage 0, 12 stage A, 10 stage B, 13 stage C; tumor size 5.2 ± 3.0 cm; number of tumors 2.6 ± 1.1; and 30 conventional transarterial chemoembolization, 6 with drug-eluting embolic agents). MR imaging was obtained before and 1 month after transarterial chemoembolization. Image-based tumor response to transarterial chemoembolization was assessed with the use of the 3D quantitative European Association for the Study of the Liver (qEASL) criterion. Clinical information, baseline imaging, and therapeutic features were used to train logistic regression (LR) and random forest (RF) models to predict patients as treatment responders or nonresponders under the qEASL response criterion. The performance of each model was validated using leave-one-out cross-validation. RESULTS: Both LR and RF models predicted transarterial chemoembolization treatment response with an overall accuracy of 78% (sensitivity 62.5%, specificity 82.1%, positive predictive value 50.0%, negative predictive value 88.5%). The strongest predictors of treatment response included a clinical variable (presence of cirrhosis) and an imaging variable (relative tumor signal intensity >27.0). CONCLUSIONS: Transarterial chemoembolization outcomes in patients with HCC may be predicted before procedures by combining clinical patient data and baseline MR imaging with the use of AI and ML techniques.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/terapia , Quimioembolización Terapéutica/métodos , Doxorrubicina/administración & dosificación , Aceite Etiodizado/administración & dosificación , Neoplasias Hepáticas/terapia , Aprendizaje Automático , Imagen por Resonancia Magnética , Adulto , Anciano , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Medios de Contraste/administración & dosificación , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad , Resultado del Tratamiento
16.
Biochem J ; 450(1): 1-8, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23343193

RESUMEN

Recent advances in proteomics have facilitated the analysis of the kinome 'en masse'. What these studies have revealed is a surprisingly dynamic network of kinase responses to highly selective kinase inhibitors, thereby illustrating the complex biological responses to these small molecules. Moreover these studies have identified key transcription factors, such as c-Myc and FOXO (forkhead box O), that play pivotal roles in kinome reprogramming in cancer cells. Since many kinase inhibitors fail despite a high efficacy of blocking their intended targets, elucidating kinome changes at a more global level will be essential to understanding the mechanisms of kinase inhibitor pharmacology. The development of technologies to study the kinome, as well as examples of kinome resilience and reprogramming, will be discussed in the present review.


Asunto(s)
Proteínas Quinasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/química , Proteómica
17.
Med Image Anal ; 97: 103249, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38963972

RESUMEN

Image registration is an essential step in many medical image analysis tasks. Traditional methods for image registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity between two images. Recent learning-based methods, trained to directly predict transformations between two images, run much faster, but suffer from performance deficiencies due to domain shift. Here we present a new neural network based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural networks to model deformations between image pairs. NIR represents the transformation between two images with a continuous function implemented via neural fields, receiving a 3D coordinate as input and outputting the corresponding deformation vector. NIR provides two ways of generating deformation field: directly output a displacement vector field for general deformable registration, or output a velocity vector field and integrate the velocity field to derive the deformation field for diffeomorphic image registration. The optimal registration is discovered by updating the parameters of the neural field via stochastic mini-batch gradient descent. We describe several design choices that facilitate model optimization, including coordinate encoding, sinusoidal activation, coordinate sampling, and intensity sampling. NIR is evaluated on two 3D MR brain scan datasets, demonstrating highly competitive performance in terms of both registration accuracy and regularity. Compared to traditional optimization-based methods, our approach achieves better results in shorter computation times. In addition, our methods exhibit performance on a cross-dataset registration task, compared to the pre-trained learning-based methods.

18.
IEEE Trans Med Imaging ; 43(5): 2010-2020, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38231820

RESUMEN

Characterizing left ventricular deformation and strain using 3D+time echocardiography provides useful insights into cardiac function and can be used to detect and localize myocardial injury. To achieve this, it is imperative to obtain accurate motion estimates of the left ventricle. In many strain analysis pipelines, this step is often accompanied by a separate segmentation step; however, recent works have shown both tasks to be highly related and can be complementary when optimized jointly. In this work, we present a multi-task learning network that can simultaneously segment the left ventricle and track its motion between multiple time frames. Two task-specific networks are trained using a composite loss function. Cross-stitch units combine the activations of these networks by learning shared representations between the tasks at different levels. We also propose a novel shape-consistency unit that encourages motion propagated segmentations to match directly predicted segmentations. Using a combined synthetic and in-vivo 3D echocardiography dataset, we demonstrate that our proposed model can achieve excellent estimates of left ventricular motion displacement and myocardial segmentation. Additionally, we observe strong correlation of our image-based strain measurements with crystal-based strain measurements as well as good correspondence with SPECT perfusion mappings. Finally, we demonstrate the clinical utility of the segmentation masks in estimating ejection fraction and sphericity indices that correspond well with benchmark measurements.


Asunto(s)
Ecocardiografía Tridimensional , Ventrículos Cardíacos , Humanos , Ecocardiografía Tridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Algoritmos , Aprendizaje Automático
19.
IEEE Trans Med Imaging ; PP2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578853

RESUMEN

Single-Photon Emission Computed Tomography (SPECT) is widely applied for the diagnosis of coronary artery diseases. Low-dose (LD) SPECT aims to minimize radiation exposure but leads to increased image noise. Limited-view (LV) SPECT, such as the latest GE MyoSPECT ES system, enables accelerated scanning and reduces hardware expenses but degrades reconstruction accuracy. Additionally, Computed Tomography (CT) is commonly used to derive attenuation maps (µ-maps) for attenuation correction (AC) of cardiac SPECT, but it will introduce additional radiation exposure and SPECT-CT misalignments. Although various methods have been developed to solely focus on LD denoising, LV reconstruction, or CT-free AC in SPECT, the solution for simultaneously addressing these tasks remains challenging and under-explored. Furthermore, it is essential to explore the potential of fusing cross-domain and cross-modality information across these interrelated tasks to further enhance the accuracy of each task. Thus, we propose a Dual-Domain Coarse-to-Fine Progressive Network (DuDoCFNet), a multi-task learning method for simultaneous LD denoising, LV reconstruction, and CT-free µ-map generation of cardiac SPECT. Paired dual-domain networks in DuDoCFNet are cascaded using a multi-layer fusion mechanism for cross-domain and cross-modality feature fusion. Two-stage progressive learning strategies are applied in both projection and image domains to achieve coarse-to-fine estimations of SPECT projections and CT-derived µ-maps. Our experiments demonstrate DuDoCFNet's superior accuracy in estimating projections, generating µ-maps, and AC reconstructions compared to existing single- or multi-task learning methods, under various iterations and LD levels. The source code of this work is available at https://github.com/XiongchaoChen/DuDoCFNet-MultiTask.

20.
Res Sq ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38464238

RESUMEN

Oncogenic KRAS mutations are prevalent in colorectal cancer (CRC) and are associated with poor prognosis and resistance to therapy. There is a substantial diversity of KRAS mutant alleles observed in CRC. Emerging clinical and experimental analysis of common KRAS mutations suggest that each mutation differently influences the clinical properties of a disease and response to therapy. Although there is some evidence to suggest biological differences between mutant KRAS alleles, these are yet to be fully elucidated. One approach to study allelic variation involves the use of isogenic cell lines that express different endogenous Kras mutants. Here, we generated Kras isogenic Apc-/- mouse colon epithelial cell lines using CRISPR-driven genome editing by altering the original G12D Kras allele to G12V, G12R, or G13D. We utilized these cell lines to perform transcriptomic and proteomic analysis to compare different signaling properties between these mutants. Both screens indicate significant differences in pathways relating to cholesterol and lipid regulation that we validated with targeted metabolomic measurements and isotope tracing. We found that these processes are upregulated in G12V lines through increased expression of nuclear SREBP1 and higher activation of mTORC1. G12V cells showed higher expression of ACSS2 and ACSS2 inhibition sensitized G12V cells to MEK inhibition. Finally, we found that ACSS2 plays a crucial role early in the development of G12V mutant tumors, in contrast to G12D mutant tumors. These observations highlight differences between KRAS mutant cell lines in their signaling properties. Further exploration of these pathways may prove to be valuable for understanding how specific KRAS mutants function, and identification of novel therapeutic opportunities in CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA