Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 193: 541-550, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28262418

RESUMEN

Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios.


Asunto(s)
Cambio Climático , Pradera , Agricultura , Animales , Humanos , Ganado , Tiempo (Meteorología)
2.
Ann Bot ; 103(1): 117-26, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18974100

RESUMEN

BACKGROUND AND AIMS: Fodder provision in species-rich grasslands, i.e. herbage growth, proportion of leaf, and leaf and stem digestibility, is difficult to predict for short periods of time, such as between two defoliations or less. The value of two methods based on plant traits for evaluating these agronomic properties was examined. METHODS: One method is based on plant trait measurements on the plant community (leaf dry matter content, plant height, flowering date); the other is on vegetation composition expressed as plant functional types (acquisitive versus conservative PFTs) established by measuring leaf dry matter content on pure grass stands. The experiment consisted of 18 fields with three different defoliation regimes (combinations of cutting and grazing) and two levels of fertilization. To establish a growth curve over the first growth cycle, herbage was sampled about 10 times in spring. KEY RESULTS: Coefficients of correlation between agronomic properties of the vegetation and its functional composition were higher when the latter was assessed through PFT and an indicator of the plant nutrient status (Ni) instead of measured plant traits. The date at which the ceiling yield occurred for the standing herbage mass or only the leaf component, which varied by up to 500 degree-days between treatments, and the leaf proportion, depended entirely on the PFT, and largely so for the leaf digestibility. The standing herbage mass at the time of ceiling yield depended only on Ni, or mainly so in the case of the daily herbage growth rate. Similar plant digestibility between plant communities was found at flowering time, although there were big differences in PFT composition. The shape of the growth curve was flatter when there was great functional diversity in the plant community. CONCLUSIONS: The PFT composition and the Ni were more reliable than the plant functional traits measured in the field for evaluating herbage growth pattern and digestibility in spring.


Asunto(s)
Biodiversidad , Poaceae/crecimiento & desarrollo , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA