Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 185(25): 4737-4755.e18, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493753

RESUMEN

Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.


Asunto(s)
Conducta Animal , Perros , Animales , Perros/genética , Perros/fisiología , Variación Genética , Fenotipo , Linaje
2.
Development ; 145(7)2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29549111

RESUMEN

Developmental gene expression patterns are orchestrated by thousands of distant-acting transcriptional enhancers. However, identifying enhancers essential for the expression of their target genes has proven challenging. Maps of long-range regulatory interactions may provide the means to identify enhancers crucial for developmental gene expression. To investigate this hypothesis, we used circular chromosome conformation capture coupled with interaction maps in the mouse limb to characterize the regulatory topology of Pitx1, which is essential for hindlimb development. We identified a robust hindlimb-specific interaction between Pitx1 and a putative hindlimb-specific enhancer. To interrogate the role of this interaction in Pitx1 regulation, we used genome editing to delete this enhancer in mouse. Although deletion of the enhancer completely disrupts the interaction, Pitx1 expression in the hindlimb is only mildly affected, without any detectable compensatory interactions between the Pitx1 promoter and potentially redundant enhancers. Pitx1 enhancer null mice did not exhibit any of the characteristic morphological defects of the Pitx1-/- mutant. Our results suggest that robust, tissue-specific physical interactions at essential developmental genes have limited predictive value for identifying enhancer mutations with strong loss-of-function phenotypes.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis/genética , Factores de Transcripción Paired Box/metabolismo , Animales , Elementos de Facilitación Genéticos/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Genome Biol ; 25(1): 156, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872220

RESUMEN

BACKGROUND: Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS: We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS: Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.


Asunto(s)
Islas de CpG , Elementos de Facilitación Genéticos , Evolución Molecular , Animales , Humanos , Ratones , Especificidad de la Especie , Código de Histonas
4.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214934

RESUMEN

Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. Here we show that turnover of CpG islands (CGIs), which contribute to enhancer activation, is broadly associated with changes in enhancer activity across mammals, including humans. We integrated maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and found that CGI content in enhancers was strongly associated with increased histone modification levels. CGIs showed widespread turnover across species and species-specific CGIs were strongly enriched for enhancers exhibiting species-specific activity across all tissues and species we examined. Genes associated with enhancers with species-specific CGIs showed concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.

5.
Sci Adv ; 9(9): eade2537, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867701

RESUMEN

The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.


Asunto(s)
Accidente Nuclear de Chernóbil , Desastres , Perros , Animales , Ambiente , Contaminación Ambiental , Demografía
6.
Nat Commun ; 13(1): 304, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027568

RESUMEN

The evolution of uniquely human traits likely entailed changes in developmental gene regulation. Human Accelerated Regions (HARs), which include transcriptional enhancers harboring a significant excess of human-specific sequence changes, are leading candidates for driving gene regulatory modifications in human development. However, insight into whether HARs alter the level, distribution, and timing of endogenous gene expression remains limited. We examined the role of the HAR HACNS1 (HAR2) in human evolution by interrogating its molecular functions in a genetically humanized mouse model. We find that HACNS1 maintains its human-specific enhancer activity in the mouse embryo and modifies expression of Gbx2, which encodes a transcription factor, during limb development. Using single-cell RNA-sequencing, we demonstrate that Gbx2 is upregulated in the limb chondrogenic mesenchyme of HACNS1 homozygous embryos, supporting that HACNS1 alters gene expression in cell types involved in skeletal patterning. Our findings illustrate that humanized mouse models provide mechanistic insight into how HARs modified gene expression in human evolution.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Modelos Genéticos , Animales , Secuencia de Bases , Diferenciación Celular/genética , Condrocitos/citología , Condrogénesis/genética , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Extremidades/embriología , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Pan troglodytes , Regiones Promotoras Genéticas/genética , Factores de Tiempo
7.
Prog Retin Eye Res ; 58: 70-88, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28111324

RESUMEN

Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.


Asunto(s)
Bestrofinas/genética , ADN/genética , Enfermedades Hereditarias del Ojo , Regulación de la Expresión Génica , Terapia Genética/métodos , Células Fotorreceptoras Retinianas Conos/patología , Enfermedades de la Retina , Epitelio Pigmentado de la Retina/patología , Animales , Bestrofinas/biosíntesis , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/terapia , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/terapia , Epitelio Pigmentado de la Retina/metabolismo
8.
PLoS One ; 10(9): e0138943, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407004

RESUMEN

Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.


Asunto(s)
Canalopatías/genética , Defectos de la Visión Cromática/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación , Secuencia de Aminoácidos , Animales , Canalopatías/diagnóstico , Canalopatías/veterinaria , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/veterinaria , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Perros , Humanos , Activación del Canal Iónico , Leucina Zippers , Simulación de Dinámica Molecular , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA