Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 114(4): 855-874, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36883862

RESUMEN

Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , ARN Interferente Pequeño/genética , MicroARNs/genética , MicroARNs/metabolismo , Plantas/metabolismo , Nucleótidos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo
2.
J Immunol ; 208(6): 1406-1416, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181640

RESUMEN

Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization still remains the best vaccination strategy available to control the development of active tuberculosis. Protection afforded by BCG vaccination gradually wanes over time and although booster strategies have promise, they remain under development. An alternative approach is to improve BCG efficacy through host-directed therapy. Building upon prior knowledge that blockade of IL-10R1 during early Mycobacterium tuberculosis infection improves and extends control of M. tuberculosis infection in mice, we employed a combined anti-IL-10R1/BCG vaccine strategy. An s.c. single vaccination of BCG/anti-IL10-R1 increased the numbers of CD4+ and CD8+ central memory T cells and reduced Th1 and Th17 cytokine levels in the lung for up to 7 wk postvaccination. Subsequent M. tuberculosis challenge in mice showed both an early (4 wk) and sustained long-term (47 wk) control of infection, which was associated with increased survival. In contrast, protection of BCG/saline-vaccinated mice waned 8 wk after M. tuberculosis infection. Our findings demonstrate that a single and simultaneous vaccination with BCG/anti-IL10-R1 sustains long-term protection, identifying a promising approach to enhance and extend the current BCG-mediated protection against TB.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Vacuna BCG , Ratones , Receptores de Interleucina-10 , Tuberculosis/prevención & control , Vacunación
3.
Plant J ; 111(5): 1308-1323, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35778946

RESUMEN

Terpene synthases (TPSs) have diverse biological functions in plants. Though the roles of TPSs in herbivore defense are well established in many plant species, their role in bacterial defense has been scarce and is emerging. Through functional genomics, here we report the in planta role of potato (Solanum tuberosum) terpene synthase (StTPS18) in bacterial defense. Expression of StTPS18 was highest in leaves and was induced in response to Pseudomonas syringae and methyl jasmonate treatments. The recombinant StTPS18 exhibited bona fide (E,E)-farnesol synthase activity forming a sesquiterpenoid, (E,E)-farnesol as the sole product, utilising (E,E)-farnesyl diphosphate (FPP). Subcellular localization of GFP fusion protein revealed that StTPS18 is localized to the cytosol. Silencing and overexpression of StTPS18 in potato resulted in reduced and enhanced tolerance, respectively, to bacterial pathogens P. syringae and Ralstonia solanacearum. Bacterial growth assay using medium containing (E,E)-farnesol significantly inhibited P. syringae growth. Moreover, StTPS18 overexpressing transgenic potato and Nicotiana tabacum leaves, and (E,E)-farnesol and P. syringae infiltrated potato leaves exhibited elevated expression of sterol pathway and members of pathogenesis-related genes with enhanced phytosterol accumulation. Interestingly, enhanced phytosterols in 13 C3 -(E,E)-farnesol infiltrated potato leaves were devoid of any noticeable 13 C labeling, indicating no direct utilization of (E,E)-farnesol in phytosterols formation. Furthermore, leaves of StTPS18 overexpressing transgenic lines had no detectable (E,E)-farnesol similar to the control plant, and emitted lower levels of sesquiterpenes than the control. These findings point towards an indirect involvement of StTPS18 and its product (E,E)-farnesol in bacterial defense through upregulation of phytosterol biosynthesis and defense genes.


Asunto(s)
Fitosteroles , Solanum tuberosum , Farnesol/metabolismo , Fitosteroles/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Nicotiana/metabolismo
4.
Plant J ; 103(1): 248-265, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064705

RESUMEN

In plants, geranylgeranyl diphosphate (GGPP, C20 ) synthesized by GGPP synthase (GGPPS) serves as precursor for vital metabolic branches including specialized metabolites. Here, we report the characterization of a GGPPS (CrGGPPS2) from the Madagascar periwinkle (Catharanthus roseus) and demonstrate its role in monoterpene (C10 )-indole alkaloids (MIA) biosynthesis. The expression of CrGGPPS2 was not induced in response to methyl jasmonate (MeJA), and was similar to the gene encoding type-I protein geranylgeranyltransferase_ß subunit (CrPGGT-I_ß), which modulates MIA formation in C. roseus cell cultures. Recombinant CrGGPPS2 exhibited a bona fide GGPPS activity by catalyzing the formation of GGPP as the sole product. Co-localization of fluorescent protein fusions clearly showed CrGGPPS2 was targeted to plastids. Downregulation of CrGGPPS2 by virus-induced gene silencing (VIGS) significantly decreased the expression of transcription factors and pathway genes related to MIA biosynthesis, resulting in reduced MIA. Chemical complementation of CrGGPPS2-vigs leaves with geranylgeraniol (GGol, alcoholic form of GGPP) restored the negative effects of CrGGPPS2 silencing on MIA biosynthesis. In contrast to VIGS, transient and stable overexpression of CrGGPPS2 enhanced the MIA biosynthesis. Interestingly, VIGS and transgenic-overexpression of CrGGPPS2 had no effect on the main GGPP-derived metabolites, cholorophylls and carotenoids in C. roseus leaves. Moreover, silencing of CrPGGT-I_ß, similar to CrGGPPS2-vigs, negatively affected the genes related to MIA biosynthesis resulting in reduced MIA. Overall, this study demonstrated that plastidial CrGGPPS2 plays an indirect but necessary role in MIA biosynthesis. We propose that CrGGPPS2 might be involved in providing GGPP for modifying proteins of the signaling pathway involved in MIA biosynthesis.


Asunto(s)
Catharanthus/enzimología , Farnesiltransferasa/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Farnesiltransferasa/genética , Redes y Vías Metabólicas , Filogenia , Plastidios/metabolismo , Análisis de Secuencia de ADN , Transcriptoma
5.
Physiol Plant ; 171(1): 7-21, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32880963

RESUMEN

Terpene synthases (TPSs) produce a variety of terpenoids that play numerous functional roles in primary and secondary metabolism, as well as in ecological interactions. Here, we report the functional characterization of an inducible potato TPS gene encoding bulnesol/elemol synthase (StBUS/ELS). The expression of StBUS/ELS in potato leaves was significantly induced in response to both bacterial (Pseudomonas syringae) and fungal (Alternaria solani) infection as well as methyl jasmonate treatment, indicating its role in defense. The leaves exhibited the highest StBUS/ELS expression followed by the stem with least and similar expression in tuber, sprout and root. Recombinant StBUS/ELS catalyzed the formation of different sesquiterpenes by utilizing farnesyl diphosphate as substrate, and the monoterpene geraniol from geranyl diphosphate. Among the sesquiterpenes formed by StBUS/ELS, elemol was the predominant product followed by α-bulnesene, bulnesol and ß-elemene. Further gas chromatography-mass spectrometry (GC-MS) analysis of StBUS/ELS assay products at different injection temperatures revealed elemol and bulnesol as the major products at 275 and 200/150°C, respectively, without much change in the levels of minor products. This indicated thermal rearrangement of bulnesol into elemol at higher temperatures. Transient overexpression of StBUS/ELS in potato leaves conferred tolerance against the growth of bacteria P. syringae and Ralstonia solanacearum, and the fungus A. solani. Further, expression analysis of pathogenesis-related (PR) genes in StBUS/ELS overexpressing leaves showed no significant change in comparison to control, indicating a direct involvement of StBUS/ELS enzymatic products against pathogens. Overall, our study suggested that StBUS/ELS is a pathogen-inducible TPS encoding bulnesol/elemol synthase and could provide a direct role in defense against biotic stress in potato.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Solanum tuberosum , Transferasas Alquil y Aril/genética , Alternaria , Proteínas de Plantas/genética , Solanum tuberosum/genética , Terpenos
6.
J Med Virol ; 91(5): 836-844, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30609051

RESUMEN

Cytomegalovirus (CMV) reactivation occurs in roughly one-third of immunocompetent patients during critical illness, and is associated with worse outcomes. These outcomes have prompted consideration of early antiviral prophylaxis, but two-third of patients would receive unnecessary treatment. Tissue viral load has been associated with risk of reactivation in murine models, and recent work has suggested a relationship between immune responses to CMV and underlying viral load. We, therefore, sought to confirm the hypothesis that serum CMV-specific immunoglobulin G (IgG) correlates with tissue viral load, and might be used to predict the risk of reactivation during critical illness. We confirm that there is a good correlation between tissue viral load and serum CMV-specific IgG after laboratory infection of inbred mice. Further, we show that naturally infected outbred hosts have variable tissue viral DNA loads that do not correlate well with serum IgG. Perhaps as a consequence, CMV-specific IgG was not predictive of reactivation events in immunocompetent humans. When reactivation did occur, those with the lowest IgG levels had longer durations of reactivation, but IgG quartiles were not associated with differing peak DNAemia. Together our data suggest that CMV-specific IgG titers diverge from tissue viral loads in outbred immunocompetent hosts, and their importance for the control of reactivation events remains unclear.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Citomegalovirus/diagnóstico , Inmunoglobulina G/sangre , Muromegalovirus/inmunología , Carga Viral , Activación Viral , Animales , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos BALB C
7.
New Phytol ; 215(3): 1115-1131, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28649699

RESUMEN

Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense.


Asunto(s)
Adaptación Fisiológica , Fitosteroles/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Acetatos/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Alcoholes Bencílicos/farmacología , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Ciclopentanos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Glucósidos/farmacología , Oxilipinas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Análisis de Secuencia de Proteína , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Withania/genética
8.
Infect Immun ; 84(11): 3243-3251, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27600501

RESUMEN

Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Vesícula Biliar/microbiología , Salmonella typhimurium/fisiología , Animales , Supervivencia Celular/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Macrófagos/microbiología , Ratones , Ratones Transgénicos , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia/fisiología
9.
Antimicrob Agents Chemother ; 60(10): 6023-33, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27458230

RESUMEN

Plasmodium falciparum, the deadliest species of malaria parasites, is dependent on glycolysis for the generation of ATP during the pathogenic red blood cell stage. Hexokinase (HK) catalyzes the first step in glycolysis, transferring the γ-phosphoryl group of ATP to glucose to yield glucose-6-phosphate. Here, we describe the validation of a high-throughput assay for screening small-molecule collections to identify inhibitors of the P. falciparum HK (PfHK). The assay, which employed an ADP-Glo reporter system in a 1,536-well-plate format, was robust with a signal-to-background ratio of 3.4 ± 1.2, a coefficient of variation of 6.8% ± 2.9%, and a Z'-factor of 0.75 ± 0.08. Using this assay, we screened 57,654 molecules from multiple small-molecule collections. Confirmed hits were resolved into four clusters on the basis of structural relatedness. Multiple singleton hits were also identified. The most potent inhibitors had 50% inhibitory concentrations as low as ∼1 µM, and several were found to have low-micromolar 50% effective concentrations against asexual intraerythrocytic-stage P. falciparum parasites. These molecules additionally demonstrated limited toxicity against a panel of mammalian cells. The identification of PfHK inhibitors with antiparasitic activity using this validated screening assay is encouraging, as it justifies additional HTS campaigns with more structurally amenable libraries for the identification of potential leads for future therapeutic development.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Hexoquinasa/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/biosíntesis , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Genes Reporteros , Glucólisis/efectos de los fármacos , Células HEK293 , Células HeLa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Señal-Ruido , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
10.
J Med Virol ; 88(8): 1408-16, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26762116

RESUMEN

Roughly 1/3rd of immune competent patients will reactivate latent cytomegalovirus (CMV) during critical illness. There are no standard methods to detect reactivation, and some investigators have postulated that presence of DNA in BAL fluid is indicative of viral replication. To test this hypothesis, we used a murine model that allows inclusion of matched healthy controls which is not possible in human studies. BALB/c mice infected with Smith-murine CMV or PBS (mock) had BAL evaluated 7, 14, or 21 days after acute infections, during latency, or during bacterial sepsis. Plaque assay, PCR, and rtPCR were performed on BALs and concomitantly obtained lung tissue. BAL cellular compositions, including tetramer evaluation of CMV-specific T cells were evaluated by flow cytometry. CMV DNA were detected in BAL at all time-points during acute infection, becoming undetectable in all mice during latency, then were detected again during bacterial sepsis, peaking 3 weeks after onset. mCMV specific T-cells were most numerous in BAL after acute viral infections, decreasing to low levels during latency, then fluctuating during bacterial sepsis. Specifically, mCMV-specific T-cells contracted at sepsis onset, expanding 2-4 weeks post-sepsis, presumably in response to increased viral loads at that time point. Altogether, our results support the use of BAL PCR for the diagnosis of CMV replication in immune competent hosts. Additionally, we demonstrate dynamic changes in CMV-specific T cells that occur in BAL during CMV infection and during sepsis induced viral reactivation. J. Med. Virol. 88:1408-1416, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Líquido del Lavado Bronquioalveolar/virología , Infecciones por Citomegalovirus/diagnóstico , Infecciones por Citomegalovirus/virología , Inmunocompetencia , Muromegalovirus/aislamiento & purificación , Activación Viral , Latencia del Virus , Animales , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar/inmunología , Infecciones por Citomegalovirus/inmunología , Humanos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/inmunología , Muromegalovirus/fisiología , Sepsis/inmunología , Sepsis/microbiología , Linfocitos T/inmunología , Carga Viral , Replicación Viral
11.
Plant Biotechnol J ; 13(9): 1287-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25809293

RESUMEN

Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (ß-amyrin synthase) and ß-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/fisiología , Estrés Fisiológico/genética , Withania/genética , Witanólidos/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Silenciador del Gen , Genes de Plantas/genética , Genes de Plantas/fisiología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Oxidorreductasas/genética , Oxidorreductasas/fisiología , Hojas de la Planta/metabolismo , Estrés Fisiológico/fisiología , Withania/enzimología , Withania/metabolismo , Withania/fisiología
12.
Adv Sci (Weinh) ; 11(36): e2401077, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39039808

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is a major global health concern, particularly affecting those with weakened immune systems, including the elderly. CD4+ T cell response is crucial for immunity against M.tb, but chronic infections and aging can lead to T cell exhaustion and senescence, worsening TB disease. Mitochondrial dysfunction, prevalent in aging and chronic diseases, disrupts cellular metabolism, increases oxidative stress, and impairs T-cell functions. This study investigates the effect of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function in aged mouse models and human CD4+ T cells from elderly individuals. Mito-transfer in naïve CD4+ T cells is found to promote protective effector and memory T cell generation during M.tb infection in mice. Additionally, it improves elderly human T cell function by increasing mitochondrial mass and altering cytokine production, thereby reducing markers of exhaustion and senescence. These findings suggest mito-transfer as a novel approach to enhance aged CD4+ T cell functionality, potentially benefiting immune responses in the elderly and chronic TB patients. This has broader implications for diseases where mitochondrial dysfunction contributes to T-cell exhaustion and senescence.


Asunto(s)
Linfocitos T CD4-Positivos , Modelos Animales de Enfermedad , Mitocondrias , Mycobacterium tuberculosis , Tuberculosis , Linfocitos T CD4-Positivos/inmunología , Humanos , Ratones , Animales , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Anciano , Senescencia Celular/inmunología , Masculino , Femenino , Ratones Endogámicos C57BL , Envejecimiento/inmunología
13.
Geroscience ; 46(3): 2901-2913, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388916

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still an ongoing global health crisis. Clinical data indicate that the case fatality rate (CFR) is age dependent, with a higher CFR percentage in the elderly population. We compared the pathogenesis of SARS-CoV-2 in young and aged K18-hACE2 transgenic mice. We evaluated morbidity, mortality, viral titers, immune responses, and histopathology in SARS-CoV-2-infected young and old K18-hACE2 transgenic mice. Within the limitation of having a low number of mice per group, our results indicate that SARS-CoV-2 infection resulted in slightly higher morbidity, mortality, and viral replication in the lungs of old mice, which was associated with an impaired IgM response and altered cytokine and chemokine profiles. Results of this study increase our understanding of SARS-CoV-2 infectivity and immuno-pathogenesis in the elderly population.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Anciano , Animales , Humanos , Ratones , COVID-19/inmunología , COVID-19/metabolismo , Citocinas , Modelos Animales de Enfermedad , Ratones Transgénicos , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Inmunoglobulina M
14.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328206

RESUMEN

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M.tb), remains a significant health concern worldwide, especially in populations with weakened or compromised immune systems, such as the elderly. Proper adaptive immune function, particularly a CD4+ T cell response, is central to host immunity against M.tb. Chronic infections, such as M.tb, as well as aging promote T cell exhaustion and senescence, which can impair immune control and promote progression to TB disease. Mitochondrial dysfunction contributes to T cell dysfunction, both in aging and chronic infections and diseases. Mitochondrial perturbations can disrupt cellular metabolism, enhance oxidative stress, and impair T-cell signaling and effector functions. This study examined the impact of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function using aged mouse models and human CD4+ T cells from elderly individuals. Our study revealed that mito-transfer in naïve CD4+ T cells promoted the generation of protective effector and memory CD4+ T cells during M.tb infection in mice. Further, mito-transfer enhanced the function of elderly human T cells by increasing their mitochondrial mass and modulating cytokine production, which in turn reduced exhaustion and senescence cell markers. Our results suggest that mito-transfer could be a novel strategy to reestablish aged CD4+ T cell function, potentially improving immune responses in the elderly and chronic TB patients, with a broader implication for other diseases where mitochondrial dysfunction is linked to T cell exhaustion and senescence.

15.
Science ; 383(6689): 1318-1325, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513014

RESUMEN

Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (-)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).


Asunto(s)
Furanos , Hidrolasas , Petunia , Piranos , Compuestos Orgánicos Volátiles , Hidrolasas/genética , Hidrolasas/metabolismo , Transducción de Señal , Compuestos Orgánicos Volátiles/metabolismo , Petunia/fisiología , Furanos/metabolismo , Piranos/metabolismo , Sesquiterpenos de Germacrano/metabolismo
16.
Adv Sci (Weinh) ; 11(5): e2303664, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990641

RESUMEN

Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.


Asunto(s)
Envejecimiento , Enfermedades Mitocondriales , Humanos , Anciano , Ratones , Animales , Linfocitos T CD4-Positivos , Linfocitos T Reguladores , Mitocondrias
17.
Immunohorizons ; 7(6): 412-420, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279084

RESUMEN

Mechanisms to shorten the duration of tuberculosis (TB) treatment include new drug formulations or schedules and the development of host-directed therapies (HDTs) that better enable the host immune system to eliminate Mycobacterium tuberculosis. Previous studies have shown that pyrazinamide, a first-line antibiotic, can also modulate immune function, making it an attractive target for combinatorial HDT/antibiotic therapy, with the goal to accelerate clearance of M. tuberculosis. In this study, we assessed the value of anti-IL-10R1 as an HDT along with pyrazinamide and show that short-term anti-IL-10R1 blockade during pyrazinamide treatment enhanced the antimycobacterial efficacy of pyrazinamide, resulting in faster clearance of M. tuberculosis in mice. Furthermore, 45 d of pyrazinamide treatment in a functionally IL-10-deficient environment resulted in sterilizing clearance of M. tuberculosis. Our data suggest that short-term IL-10 blockade with standard TB drugs has the potential to improve clinical outcome by reducing the treatment duration.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Interleucina-10
18.
Eur J Pharm Sci ; 187: 106489, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311533

RESUMEN

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Ácido Hialurónico , Enzima Convertidora de Angiotensina 2 , Sulfatos , Ratones Transgénicos
19.
Virol J ; 9: 45, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22340040

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes chronic, economically devastating disease in pigs of all ages. Frequent mutations in the viral genome result in viruses with immune escape mutants. Irrespective of regular vaccination, control of PRRSV remains a challenge to swine farmers. In PRRSV-infected pigs, innate cytokine IFN-α is inhibited and the adaptive arm of the immunity is delayed. To elucidate both cellular and innate cytokine responses at very early stages of PRRSV infection, seven weeks old pigs maintained on a commercial pig farm were infected and analyzed. RESULTS: One pig in a pen containing 25 pigs was PRRSV infected and responses from this pig and one penmate were assessed two days later. All the infected and a few of the contact neighbor pigs were viremic. At day 2 post-infection, approximately 50% of viremic pigs had greater than 50% reduction in NK cell-mediated cytotoxicity, and nearly a 1-fold increase in IFN-α production was detected in blood of a few pigs. Enhanced secretion of IL-4 (in ~90%), IL-12 (in ~40%), and IL-10 (in ~20%) (but not IFN-γ) in PRRSV infected pigs was observed. In addition, reduced frequency of myeloid cells, CD4(-)CD8(+) T cells, and CD4(+)CD8(+) T cells and upregulated frequency of lymphocytes bearing natural T regulatory cell phenotype were detected in viremic pigs. Interestingly, all viremic contact pigs also had comparable immune cell modulations. CONCLUSION: Replicating PRRSV in both infected and contact pigs was found to be responsible for rapid modulation in NK cell-meditated cytotoxicity and alteration in the production of important immune cytokines. PRRSV-induced immunological changes observed simultaneously at both cellular and cytokine levels early post-infection appear to be responsible for the delay in generation of adaptive immunity. As the study was performed in pigs maintained under commercial environmental conditions, this study has practical implications in design of protective vaccines.


Asunto(s)
Citocinas/metabolismo , Inmunidad Celular , Inmunidad Innata , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Antígenos CD4/análisis , Antígenos CD8/análisis , Células Asesinas Naturales/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos , Subgrupos de Linfocitos T/inmunología , Viremia
20.
J Clin Immunol ; 31(2): 228-39, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21042929

RESUMEN

Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4(+) cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens.


Asunto(s)
Hiperreactividad Bronquial/inmunología , Pulmón/inmunología , Células T Asesinas Naturales/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos CD1d/inmunología , Asma/inmunología , Hiperreactividad Bronquial/patología , Modelos Animales de Enfermedad , Glicósidos , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Monosacáridos/farmacología , Células T Asesinas Naturales/efectos de los fármacos , Neumonía/inmunología , Neumonía/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA