Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer ; 17(1): 100, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012170

RESUMEN

BACKGROUND: The disruption of normal gene regulation due to microRNA dysfunction is a common event in cancer pathogenesis. MicroRNA-27b is an example of an oncogenic miRNA, and it is frequently upregulated in breast cancer. MicroRNAs have been found to deregulate tumor metabolism, which typically manifests as heightened cellular glucose uptake in consort with increased flux through glycolysis, followed by the preferential conversion of glycolytic pyruvate into lactate (a phenomenon known as the Warburg Effect). Pyruvate Dehydrogenase, an enzyme complex linking glycolysis with downstream oxidative metabolism, represents a key location where regulation of metabolism occurs; PDHX is a key structural component of this complex and is essential for its function. METHODS: We sought to characterize the role of miR-27b in breast cancer by identifying novel transcripts under its control. We began by utilizing luciferase, RNA, and protein assays to establish PDHX as a novel target of miR-27b. We then tested whether miR-27b could alter metabolism using several metabolite assay kits and performed a seahorse analysis. We also examined how the altered metabolism might affect cell proliferation. Lastly, we confirmed the relevance of our findings in human breast tumor samples. RESULTS: Our data indicate that Pyruvate Dehydrogenase Protein X is a credible target of miR-27b in breast cancer. Mechanistically, by suppressing PDHX, miR-27b altered levels of pyruvate, lactate and citrate, as well as reducing mitochondrial oxidation and promoting extracellular acidification. These changes corresponded with an increased capacity for cell proliferation. In human breast tumor samples, PDHX expression was deficient, and low levels of PDHX were associated with reduced patient survival. CONCLUSIONS: MicroRNA-27b targets PDHX, resulting in an altered metabolic configuration that is better suited to fuel biosynthetic processes and cell proliferation, thereby promoting breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Regulación hacia Abajo , MicroARNs/genética , Complejo Piruvato Deshidrogenasa/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ácido Cítrico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Análisis de Supervivencia
2.
Pain Ther ; 9(1): 55-69, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31994019

RESUMEN

Kratom, or Mitragyna, is a tropical plant indigenous to Southeast Asia, with unique pharmacological properties. It is commonly consumed by preparing the leaves into decoction or tea, or by grinding them into a powder. Recent evidence has revealed that kratom has physiological effects similar to opioids, including pain relief and euphoria, as well as stimulant properties, which together raise potential concern for dependence and addiction. Moreover, growing evidence suggests that the prevalence of kratom use is increasing in many parts of the world, raising important considerations for healthcare providers. This manuscript will discuss the most current epidemiology, pharmacology, toxicity, and management related to kratom, while seeking to provide a contemporary perspective on the issue and its role in the greater context of the opioid epidemic.

3.
PLoS One ; 13(6): e0198945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912916

RESUMEN

Malat1 is a long noncoding RNA with a wide array of functions, including roles in regulating cancer cell migration and metastasis. However, the nature of its involvement in control of these oncogenic processes is incompletely understood. In the present study, we investigate the role of Malat1 and the effects of Malat1 KO in a breast cancer cell model. Our selection of Malat1 as the subject of inquiry followed initial screening experiments seeking to identify lncRNAs which are altered in the presence or absence of Nischarin, a gene of interest previously discovered by our lab. Nischarin is a well characterized tumor suppressor protein and actively represses cell proliferation, migration, and invasion in breast cancer. Our microarray screen for lncRNAs revealed multiple lncRNAs to be significantly elevated in cells ectopically expressing Nischarin compared to control cancer cells, which have only marginal Nisch expression. Using these cells, we assess how the link between Nischarin and Malat1 affects cancer cell function, finding that Malat1 confers an inhibitory effect on cell growth and migration which is lost following Malat1 KO, but in a Nisch-dependent context. Specifically, Malat1 KO in the background of low Nischarin expression had a limited effect on cell functions, while Malat1 KO in cells with high levels of Nischarin led to significant increases in cell proliferation and migration. In summary, this project provides further clarity concerning the function of Malat1, specifically in breast cancer, while also indicating that the Nischarin expression context is an important factor in the determining how Malat1 activity is governed in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Imidazolina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Noncoding RNA ; 1(1): 17-43, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29861413

RESUMEN

The advent of the microRNAs in the early 1990s has proven to be a tremendously significant development within the purview of gene regulation. They participate in the regulation of a broad assembly of processes vital to proper cell function and the perturbation of these pathways following alteration of miRNA expression is strongly believed to contribute to the pathogenesis of cancer. This review provides a comprehensive overview of the miRNAs that have to date been well-characterized in the context of human breast neoplasia. Detailed discussion will center around their role in tumor initiation and progression, control of epithelial-mesenchymal transition (EMT), cancer stem cell formation, use as biomarkers in tissues and circulation, as well as their role in cancer treatment. In addition, attention will be given to topics which remain underexplored, such as miRNA control of cancer cell metabolism and the genomic/epigenetic origins underlying the preliminary disruption of miRNA expression in disease. This review will also address and attempt to resolve instances where discordant, inter-study findings have been reported (examples of which are replete in the literature) while also identifying bottlenecks hampering progress in miRNA research and other challenges that confront this fledgling but promising field of biomedical research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA