Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 20(2): 217-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26499096

RESUMEN

Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using ß-glycerophosphate with activated vitamin D3 , or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast-like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H-1,2-Dithiole-3-thione was able to inhibit the SMC transition into osteoblast-like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.


Asunto(s)
Ferritinas/metabolismo , Miocitos del Músculo Liso/fisiología , Osteoblastos/fisiología , Fosfatasa Alcalina/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiología , Calcitriol/metabolismo , Calcio/metabolismo , Células Cultivadas , Colecalciferol/metabolismo , Ergocalciferoles/metabolismo , Glicerofosfatos/farmacología , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Fosfatos/metabolismo , Tionas/farmacología , Tiofenos/farmacología , Calcificación Vascular/metabolismo , Calcificación Vascular/fisiopatología
2.
J Immunol ; 190(6): 2984-93, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23390297

RESUMEN

Tumor stromal alternatively activated macrophages are important determinants of antitumor T lymphocyte responses, intratumoral neovascularization, and metastatic dissemination. Our recent efforts to investigate the mechanism of macrophage migration inhibitory factor (MIF) in antagonizing antimelanoma immune responses reveal that macrophage-derived MIF participates in macrophage alternative activation in melanoma-bearing mice. Both peripheral and tumor-associated macrophages (TAMs) isolated from melanoma bearing MIF-deficient mice display elevated proinflammatory cytokine expression and reduced anti-inflammatory, immunosuppressive, and proangiogenic gene products compared with macrophages from tumor-bearing MIF wild-type mice. Moreover, TAMs and myeloid-derived suppressor cells from MIF-deficient mice exhibit reduced T lymphocyte immunosuppressive activities compared with those from their wild-type littermates. Corresponding with reduced tumor immunosuppression and neo-angiogenic potential by TAMs, MIF deficiency confers protection against transplantable s.c. melanoma outgrowth and melanoma lung metastatic colonization. Finally, we report for the first time, to our knowledge, that our previously discovered MIF small molecule antagonist, 4-iodo-6-phenylpyrimidine, recapitulates MIF deficiency in vitro and in vivo, and attenuates tumor-polarized macrophage alternative activation, immunosuppression, neoangiogenesis, and melanoma tumor outgrowth. These studies describe an important functional contribution by MIF to TAM alternative activation and provide justification for immunotherapeutic targeting of MIF in melanoma patients.


Asunto(s)
Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Activación de Macrófagos/inmunología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Melanoma Experimental/inmunología , Animales , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Células Cultivadas , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Activación de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/biosíntesis , Factores Inhibidores de la Migración de Macrófagos/deficiencia , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
3.
Biochem J ; 449(1): 189-94, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22989377

RESUMEN

Induction or ectopic overexpression of HO-1 (haem oxygenase 1) protects against a wide variety of disorders. These protective effects have been variably ascribed to generation of carbon monoxide (released during cleavage of the alpha-methene bridge of haem) and/or to production of the antioxidant bilirubin. We investigated HO-1-overexpressing A549 cells and find that, as expected, HO-1-overexpressing cells are resistant to killing by hydrogen peroxide. Surprisingly, these cells have approximately twice the normal amount of intracellular iron which usually tends to amplify oxidant killing. However, HO-1-overexpressing cells contain only ~25% as much 'loose' (probably redox active) iron. Indeed, inhibition of ferritin synthesis [via siRNA (small interfering RNA) directed at the ferritin heavy chain] sensitizes the HO-1-overexpressing cells to peroxide killing. It appears that HO-1 overexpression leads to enhanced destruction of haem, consequent 2-3-fold induction of ferritin, and compensatory increases in transferrin receptor expression and haem synthesis. However, there is no functional haem deficiency because cellular oxygen consumption and catalase activity are similar in both cell types. We conclude that, at least in many cases, the cytoprotective effects of HO-1 induction or forced overexpression may derive from elevated expression of ferritin and consequent reduction of redox active 'loose' iron.


Asunto(s)
Ferritinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/genética , Líquido Intracelular/metabolismo , Hierro/metabolismo , Línea Celular Tumoral , Ferritinas/biosíntesis , Hemo-Oxigenasa 1/biosíntesis , Humanos
4.
J Exp Med ; 204(3): 657-66, 2007 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-17339407

RESUMEN

Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses preestablished hypertrophic cardiomyopathy caused by pressure overload induced by ascending aortic constriction in a mouse model. The reversal occurs in the continued presence of pressure overload. Sustained pressure overload leads to decreases in cardiac Cu and vascular endothelial growth factor (VEGF) levels along with suppression of myocardial angiogenesis. Cu supplementation replenishes cardiac Cu, increases VEGF, and promotes angiogenesis. Systemic administration of anti-VEGF antibody blunts Cu regression of hypertrophic cardiomyopathy. In cultured human cardiomyocytes, Cu chelation blocks insulin-like growth factor (IGF)-1- or Cu-stimulated VEGF expression, which is relieved by addition of excess Cu. Both IGF-1 and Cu activate hypoxia-inducible factor (HIF)-1alpha and HIF-1alpha gene silencing blocks IGF-1- or Cu-stimulated VEGF expression. HIF-1alpha coimmunoprecipitates with a Cu chaperone for superoxide dismutase-1 (CCS), and gene silencing of CCS, but not superoxide dismutase-1, prevents IGF-1- or Cu-induced HIF-1alpha activation and VEGF expression. Therefore, dietary Cu supplementation improves the condition of hypertrophic cardiomyopathy at least in part through CCS-mediated HIF-1alpha activation of VEGF expression and angiogenesis.


Asunto(s)
Cardiomiopatía Hipertrófica/dietoterapia , Cardiomiopatía Hipertrófica/etiología , Cobre/uso terapéutico , Suplementos Dietéticos , Hipertensión/complicaciones , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Stem Cell Investig ; 10: 2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742283

RESUMEN

Background: Our earlier work has shown that a unique stem cell-based vaccine that comprises of murine embryonic stem cells (ESCs) and murine fibroblasts expressing the immunostimulant granulocyte-macrophage colony stimulating factor (GM-CSF) successfully protects mice from the outgrowth of an implantable form of murine lung cancer. The use of live ESCs raises the potential risks of inducing teratomas and autoimmunity. We have attempted to improve the safety and utility of this prophylactic vaccine by employing exosomes derived from murine ESCs engineered to produce GM-CSF (ES-exo/GM-CSF vaccine). Methods: We have previously reported that ES-exo/GM-CSF immunization does protect mice from the outgrowth of an implantable form of murine lung cancer. Here, we have investigated the cancer prevention efficacy of ES-exo/GM-CSF vaccine in an experimental metastasis model of murine lung cancer, in which Lewis lung carcinoma (LLC) cells were administered into female C57BL/6 mice (8 weeks of age) through tail vein injection and subsequently LLC tumors were established in lungs. Results: Our objective is to test the anti-cancer efficacy of ES-exo/GM-CSF vaccine in a mouse model of metastatic lung cancer. Our studies indicate that vaccination of mice with ES-exo/GM-CSF vaccine inhibited the growth of metastatic lung tumors. ES-exo/GM-CSF vactionation reduced lung tumor burden from 1.86% in non-vaccinated, LLC-challenged mice to 0.036% in corresponding vacinnated mice. Importantly, control exosomes without GM-CSF failed to provide protection against metastasized pulmonary tumors. The efficacy of ES-exo/GM-CSF vaccination was associated with a decrease in the frequencies of tumor-infiltrating immunosuppressive immune cells, including T regulatory cells, myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages, as well as an increase in effector cytokine production from intra-tumoral CD8+ T cells. Conclusions: Overall, our research provides a novel strategy for developing a cell-free prophylactic vaccine against lung tumors.

6.
Mol Cancer ; 11: 60, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22917272

RESUMEN

BACKGROUND: Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). RESULTS: We found that the introduction of activated H-Ras(V12) into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. CONCLUSION: Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents.


Asunto(s)
Adenocarcinoma/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Neoplasias Pulmonares/enzimología , Proteínas ras/metabolismo , Adenocarcinoma/química , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/fisiología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Activación Enzimática , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , Consumo de Oxígeno , ARN Interferente Pequeño/genética , Trasplante Heterólogo
7.
Blood ; 115(12): 2483-90, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20053759

RESUMEN

The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation. We found that pulmonary vascular endothelial VCAM-1 and tissue factor (TF) expression (both are indicators of endothelial activation) are powerfully and significantly inhibited by TSA. This is seen both with pretreatment before the inducing stress of hypoxia/reoxygenation (NY1DD sickle transgenic mouse), and upon longer-term therapy after endothelial activation has already occurred (hBERK1 sickle mouse at ambient air). In addition, TSA prevented vascular stasis in sickle mice, it exhibited activity as an iron chelator, and it induced expression of the antisickling hemoglobin, hemoglobin F. Notably, the TSA analog SAHA (suberoylanilide hydroxaminc acid) that is already approved for human clinical use exhibits the same spectrum of biologic effects as TSA. We suggest that SAHA possibly could provide true, multimodality, salubrious effects for prevention and treatment of the chronic vasculopathy of sickle cell anemia.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/farmacología , Hemoglobina Fetal/genética , Hemoglobina A/genética , Hemoglobina Falciforme/genética , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Quelantes del Hierro/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Venas Pulmonares/citología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Tromboplastina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vénulas/citología , Vénulas/fisiología , Vorinostat , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 30(7): 1347-53, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20378845

RESUMEN

OBJECTIVE: We investigated whether red cell infiltration of atheromatous lesions promotes the later stages of atherosclerosis. METHODS AND RESULTS: We find that oxidation of ferro (FeII) hemoglobin in ruptured advanced lesions occurs generating ferri (FeIII) hemoglobin and via more extensive oxidation ferrylhemoglobin (FeIII/FeIV=O). The protein oxidation marker dityrosine accumulates in complicated lesions, accompanied by the formation of cross-linked hemoglobin, a hallmark of ferrylhemoglobin. Exposure of normal red cells to lipids derived from atheromatous lesions causes hemolysis and oxidation of liberated hemoglobin. In the interactions between hemoglobin and atheroma lipids, hemoglobin and heme promote further lipid oxidation and subsequently endothelial reactions such as upregulation of heme oxygenase-1 and cytotoxicity to endothelium. Oxidative scission of heme leads to release of iron and a feed-forward process of iron-driven plaque lipid oxidation. The inhibition of heme release from globin by haptoglobin and sequestration of heme by hemopexin suppress hemoglobin-mediated oxidation of lipids of atheromatous lesions and attenuate endothelial cytotoxicity. CONCLUSIONS: The interior of advanced atheromatous lesions is a prooxidant environment in which erythrocytes lyse, hemoglobin is oxidized to ferri- and ferrylhemoglobin, and released heme and iron promote further oxidation of lipids. These events amplify the endothelial cell cytotoxicity of plaque components.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/sangre , Eritrocitos/metabolismo , Hematoma/sangre , Hemo/metabolismo , Hemoglobinas/metabolismo , Hierro/sangre , Aorta/patología , Aterosclerosis/patología , Supervivencia Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Haptoglobinas/metabolismo , Hematoma/patología , Hemo-Oxigenasa 1/sangre , Hemólisis , Hemopexina/metabolismo , Humanos , Peroxidación de Lípido , Lipoproteínas LDL/metabolismo , Metahemoglobina/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Tirosina/análogos & derivados , Tirosina/sangre
9.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207062

RESUMEN

The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.

10.
J Vis Exp ; (177)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34842232

RESUMEN

Embryonic stem cells (ESCs) are pluripotent stem cells capable of self-renewal and differentiation into all types of embryonic cells. Like many other cell types, ESCs release small membrane vesicles, such as exosomes, to the extracellular environment. Exosomes serve as essential mediators of intercellular communication and play a basic role in many (patho)physiological processes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) functions as a cytokine to modulate the immune response. The presence of GM-CSF in exosomes has the potential to boost their immune-regulatory function. Here, GM-CSF was stably overexpressed in the murine ESC cell line ES-D3. A protocol was developed to isolate high-quality exosome-enriched extracellular vesicles (EVs) from ES-D3 cells overexpressing GM-CSF. Isolated exosome-enriched EVs were characterized by a variety of experimental approaches. Importantly, significant amounts of GM-CSF were found to be present in exosome-enriched EVs. Overall, GM-CSF-bearing exosome-enriched EVs from ESCs might function as cell-free vesicles to exert their immune-regulatory activities.


Asunto(s)
Exosomas , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Diferenciación Celular , Citocinas/metabolismo , Células Madre Embrionarias/metabolismo , Exosomas/metabolismo , Ratones
11.
Sci Rep ; 11(1): 10435, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001932

RESUMEN

Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.


Asunto(s)
Estenosis Carotídea/complicaciones , Hemo-Oxigenasa 1/metabolismo , Hemo/metabolismo , Hemorragia/patología , Placa Aterosclerótica/complicaciones , Biopsia , Estenosis Carotídea/sangre , Línea Celular , Estrés del Retículo Endoplásmico , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/patología , Técnicas de Silenciamiento del Gen , Voluntarios Sanos , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/genética , Hemólisis , Hemorragia/etiología , Humanos , Placa Aterosclerótica/sangre
12.
Int J Cancer ; 127(9): 2020-30, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20127861

RESUMEN

Despite recent advances in treatment and management of prostate cancer (PCa), it remains the second leading cause of cancer-related deaths among men in the US. Chemotherapy is one of the treatment alternatives for hormone refractory metastatic PCa. However, current chemotherapeutic regimens provide palliative benefit but relatively modest survival advantage primarily due to chemo-resistance and upregulated antiapoptotic machineries in PCa cells. Therefore, blocking the mechanisms responsible for suppression of apoptosis might improve current chemotherapeutic regimens. In this study, we show that CC chemokine receptor-9 (CCR9) and its natural ligand CCL25 interaction upregulates antiapoptotic proteins (i.e., PI3K, AKT, ERK1/2 and GSK-3beta) and downregulate activation of caspase-3 in PCa cells. Significant downregulation of these CCR9-mediated antiapoptotic proteins in the presence of a PI3K inhibitor (wortmannin), further suggests that the antiapoptotic action of CCR9 is primarily regulated through PI3K. Furthermore, the cytotoxic effect of etoposide was significantly inhibited in the presence of CCL25, and this inhibitory effect of CCL25 was abrogated when CCR9-CCL25 interaction was blocked using anti-CCR9 monoclonal antibodies. In conformation to these in vitro studies, significant reduction in tumor burden was found in mice receiving CCL25 neutralizing antibodies and etoposide together as compared to both as a single agent. These results suggest that the CCR9-CCL25 axis mediates PI3K/AKT-dependent antiapoptotic signals in PCa cells and could be a possible reason for low apoptosis and modest chemotherapeutic response. Therefore, targeting CCR9-CCL25 axis with cytotoxic agents may provide better therapeutic outcomes than using cytotoxic agents alone.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Quimiocinas CC/metabolismo , Etopósido/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CCR/metabolismo , Animales , Caspasa 3/biosíntesis , Línea Celular Tumoral , Progresión de la Enfermedad , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Desnudos , Transducción de Señal
13.
Part Fibre Toxicol ; 7: 22, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20727197

RESUMEN

BACKGROUND: Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs]) with differing size (MWCNTs of different diameters < 8 nm, 20-30 nm, > 50 nm; but same length 0.5-2 microm) to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT) bronchiolar epithelial cells. RESULTS: Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. CONCLUSIONS: Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the target cell type are critical determinants of intracellular responses, degree of cytotoxicity and potential mechanisms of toxicity.


Asunto(s)
Nanopartículas/toxicidad , Nanoestructuras/toxicidad , Células 3T3 , Animales , Apoptosis , Proteínas Sanguíneas/química , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Supervivencia Celular , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Nanopartículas/química , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
14.
Exp Mol Pathol ; 86(3): 192-7, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19171137

RESUMEN

Almost 100 years have passed since the seminal observations of Schöne showing that vaccination of animals with fetal tissue would prevent the growth of transplantable tumors. Many subsequent reports have affirmed the general idea that immunologic rejection of transplantable tumors, as well as prevention of carcinogenesis, may be affected by vaccination with embryonic/fetal material. Following a decade of intense research on this phenomenon during approximately 1964-1974, interest appears to have waned. This earlier experimental work may be particularly pertinent in view of the rising interest in so-called cancer stem cells. We believe that further work - perhaps involving the use of embryonic stem cells as immunogens - is warranted and that the results reviewed herein support the concept that vaccination against the appearance of cancers of all kinds is a real possibility.


Asunto(s)
Vacunas contra el Cáncer , Animales , Antígenos de Neoplasias , Vacunas contra el Cáncer/historia , Células Madre Embrionarias/inmunología , Femenino , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Embarazo/inmunología
15.
Oncoimmunology ; 8(3): 1561119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723593

RESUMEN

The antigenic similarity between embryos and tumors has raised the idea of using embryonic material as a preventative vaccine against neoplastic disease. Indeed, we have previously reported that a vaccine comprises allogeneic murine embryonic stem cells (ESCs) and murine fibroblasts expressing GM-CSF (to amplify immune responses) successfully blocks the outgrowth of an implantable cancer (Lewis lung carcinoma; LLC) and lung tumors generated in mice using a combination of a mutagen followed by chronic pulmonary inflammation. However, such a vaccine is obviously impractical for application to humans. The use of fibroblasts to generate GM-CSF is needlessly complicated, and intact whole ESCs carry the hazard of generating embryomas/teratomas. Here, we report the successful application of an alternative prophylactic vaccine comprises exosomes derived from murine ESCs engineered to produce GM-CSF. Vaccination of mice with these exosomes significantly slowed or blocked the outgrowth of implanted LLC while control exosomes lacking GM-CSF were ineffective. Examination of tumor-infiltrating immune cells from mice vaccinated with the GM-CSF-expressing exosomes showed robust tumor-reactive CD8+ T effector responses, Th1 cytokine responses, and higher CD8+ T effector/CD4+CD25+Foxp3+ T regulatory cell ratio in the tumors. We conclude that a similar vaccine derived from GM-CSF- expressing human ESCs can be employed as a preventative vaccine for humans with an increased risk of developing cancer.

16.
Data Brief ; 27: 104624, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31692674

RESUMEN

Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

17.
Breast Cancer Res ; 10(5): R84, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18922152

RESUMEN

INTRODUCTION: Glycolysis is increased in breast adenocarcinoma cells relative to adjacent normal cells in order to produce the ATP and anabolic precursors required for survival, growth and invasion. Glycolysis also serves as a key source of the reduced form of cytoplasmic nicotinamide adenine dinucleotide (NADH) necessary for the shuttling of electrons into mitochondria for electron transport. Lactate dehydrogenase (LDH) regulates glycolytic flux by converting pyruvate to lactate and has been found to be highly expressed in breast tumours. Aspartate aminotransferase (AAT) functions in tandem with malate dehydrogenase to transfer electrons from NADH across the inner mitochondrial membrane. Oxamate is an inhibitor of both LDH and AAT, and we hypothesised that oxamate may disrupt the metabolism and growth of breast adenocarcinoma cells. METHODS: We examined the effects of oxamate and the AAT inhibitor amino oxyacetate (AOA) on 13C-glucose utilisation, oxygen consumption, NADH and ATP in MDA-MB-231 cells. We then determined the effects of oxamate and AOA on normal human mammary epithelial cells and MDA-MB-231 breast adenocarcinoma cell proliferation, and on the growth of MDA-MB-231 cells as tumours in athymic BALB/c female mice. We ectopically expressed AAT in MDA-MB-231 cells and examined the consequences on the cytostatic effects of oxamate. Finally, we examined the effect of AAT-specific siRNA transfection on MDA-MB-231 cell proliferation. RESULTS: We found that oxamate did not attenuate cellular lactate production as predicted by its LDH inhibitory activity, but did have an anti-metabolic effect that was similar to AAT inhibition with AOA. Specifically, we found that oxamate and AOA decreased the flux of 13C-glucose-derived carbons into glutamate and uridine, both products of the mitochondrial tricarboxylic acid cycle, as well as oxygen consumption, a measure of electron transport chain activity. Oxamate and AOA also selectively suppressed the proliferation of MDA-MB-231 cells relative to normal human mammary epithelial cells and decreased the growth of MDA-MB-231 breast tumours in athymic mice. Importantly, we found that ectopic expression of AAT in MDA-MB-231 cells conferred resistance to the anti-proliferative effects of oxamate and that siRNA silencing of AAT decreased MDA-MB-231 cell proliferation. CONCLUSIONS: We conclude that AAT may be a valid molecular target for the development of anti-neoplastic agents.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Ácido Aminooxiacético/uso terapéutico , Antineoplásicos/uso terapéutico , Aspartato Aminotransferasas/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Ácido Oxámico/uso terapéutico , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Ácido Aminooxiacético/farmacología , Animales , Antineoplásicos/farmacología , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/fisiología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/enzimología , Ciclo del Ácido Cítrico/efectos de los fármacos , Citostáticos/farmacología , Citostáticos/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Glucólisis/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Ácido Oxámico/farmacología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Chest ; 133(6): 1410-1414, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18339777

RESUMEN

BACKGROUND: Pulmonary vasoconstriction in response to hypoxia is unusual inasmuch as local exposure of nonpulmonary vasculature to hypoxia results in vasodilation. It has been suggested that pulmonary artery smooth-muscle cells may relax in response to intracellular generation of reactive oxygen species (ROS) and that the production of ROS decreases under hypoxia. However, other workers report increased ROS production in human pulmonary artery smooth-muscle cells (HPASMC) during hypoxia. METHODS: Using dihydrodichlorofluorescein diacetate, dihydroethidium, and Amplex Red (Molecular Probes; Eugene, OR), we estimated ROS generation by confluent primary cultures of HPASMC and human coronary artery smooth-muscle cells (HCASMC) under normoxia (20%) and acute hypoxia (5%). RESULTS: All three assay systems showed that HPASMC production of ROS is decreased under hypoxia and to a greater extent than the decrease in ROS production by HCASMC. A substantially greater percentage of normoxic ROS production by HPASMC is mitochondrial (> 60%) compared to HCASMC (< 30%). CONCLUSIONS: These results support the conclusion that ROS generation decreases, rather than increases, in HPASMC during hypoxia. However, as ROS production also decreases in HCASMC during hypoxia, the reason for the opposite change in vascular tone is not yet apparent.


Asunto(s)
Hipoxia/metabolismo , Músculo Liso Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Vasos Coronarios , Humanos , Técnicas In Vitro , Arteria Pulmonar , Vasoconstricción
19.
Antioxid Redox Signal ; 9(12): 2119-37, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17767398

RESUMEN

Iron-derived reactive oxygen species are involved in the pathogenesis of numerous vascular disorders. One abundant source of redox active iron is heme, which is inherently dangerous when it escapes from its physiologic sites. Here, we present a review of the nature of heme-mediated cytotoxicity and of the strategies by which endothelium manages to protect itself from this clear and present danger. Of all sites in the body, the endothelium may be at greatest risk of exposure to heme. Heme greatly potentiates endothelial cell killing mediated by leukocytes and other sources of reactive oxygen. Heme also promotes the conversion of low-density lipoprotein to cytotoxic oxidized products. Hemoglobin in plasma, when oxidized, transfers heme to endothelium and lipoprotein, thereby enhancing susceptibility to oxidant-mediated injury. As a defense against such stress, endothelial cells upregulate heme oxygenase-1 and ferritin. Heme oxygenase opens the porphyrin ring, producing biliverdin, carbon monoxide, and a most dangerous product-redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. These homeostatic adjustments have been shown to be effective in the protection of endothelium against the damaging effects of heme and oxidants; lack of adaptation in an iron-rich environment led to extensive endothelial damage in humans.


Asunto(s)
Células Endoteliales/patología , Ferritinas , Hemo-Oxigenasa 1/metabolismo , Hemo , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Ferritinas/metabolismo , Ferritinas/farmacología , Hemo/metabolismo , Hemo/farmacología , Hemoglobinas/metabolismo , Hemoglobinas/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Lipoproteínas LDL/química , Modelos Biológicos , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos
20.
J Transl Med ; 5: 31, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17603911

RESUMEN

BACKGROUND: Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. METHODS: Thirteen male medical student volunteers (Caucasian, 21-30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. RESULTS: Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. CONCLUSION: In humans--as in rodents--biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after, medical device implantation should improve the functionality and longevity of medical implants.


Asunto(s)
Materiales Biocompatibles/farmacología , Fibrinógeno/inmunología , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/inmunología , Liberación de Histamina/inmunología , Implantación de Prótesis , Adsorción/efectos de los fármacos , Adulto , Animales , Antagonistas de los Receptores Histamínicos/farmacología , Liberación de Histamina/efectos de los fármacos , Humanos , Masculino , Ratones , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Tereftalatos Polietilenos/farmacología , Suero , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA