Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 194: 59-69, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880194

RESUMEN

Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.


Asunto(s)
Proteínas Argonautas , MicroARNs , Miocitos Cardíacos , Especies Reactivas de Oxígeno , MicroARNs/genética , MicroARNs/metabolismo , Animales , Femenino , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Masculino , Fosforilación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo , Factor de Transcripción Sp1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Complejo Silenciador Inducido por ARN/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Caracteres Sexuales
2.
Toxicol Appl Pharmacol ; 483: 116833, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266874

RESUMEN

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 µg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 µg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.


Asunto(s)
Arsénico , Arsenitos , Enfermedades Cardiovasculares , Efectos Tardíos de la Exposición Prenatal , Humanos , Animales , Ratones , Femenino , Embarazo , Arsénico/metabolismo , Arsenitos/toxicidad , Receptores de Progesterona , Exposición Materna/efectos adversos , Remodelación Ventricular , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA