Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Z Med Phys ; 32(3): 334-345, 2022 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-35144850

RESUMEN

Spoke trajectory parallel transmit (pTX) excitation in ultra-high field MRI enables B1+ inhomogeneities arising from the shortened RF wavelength in biological tissue to be mitigated. To this end, current RF excitation pulse design algorithms either employ the acquisition of field maps with subsequent non-linear optimization or a universal approach applying robust pre-computed pulses. We suggest and evaluate an intermediate method that uses a subset of acquired field maps combined with generative machine learning models to reduce the pulse calibration time while offering more tailored excitation than robust pulses (RP). The possibility of employing image-to-image translation and semantic image synthesis machine learning models based on generative adversarial networks (GANs) to deduce the missing field maps is examined. Additionally, an RF pulse design that employs a predictive machine learning model to find solutions for the non-linear (two-spokes) pulse design problem is investigated. As a proof of concept, we present simulation results obtained with the suggested machine learning approaches that were trained on a limited data-set, acquired in vivo. The achieved excitation homogeneity based on a subset of half of the B1+ maps acquired in the calibration scans and half of the B1+ maps synthesized with GANs is comparable with state of the art pulse design methods when using the full set of calibration data while halving the total calibration time. By employing RP dictionaries or machine-learning RF pulse predictions, the total calibration time can be reduced significantly as these methods take only seconds or milliseconds per slice, respectively.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Encéfalo , Calibración , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
2.
IEEE Trans Med Imaging ; 39(12): 4225-4236, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32763849

RESUMEN

We present an evolution-strategy based approach to solve the magnitude least squares (MLS) design problem of low flip-angle slice-selective parallel transmit RF pulses for ultra-high field MRI using SAR and peak-RF-constraints. A combined transmit k-space trajectory and RF pulse weight optimization is proposed in two algorithmic steps. The first step is a coarse grid search to find an initial solution that fulfills all constraints for the subsequent multistage optimization. This avoids convergence to the next nearest local minimum. The second step attempts to refine the results using multiple evolution strategies. We compare the performance of our approach with the non-convex optimization methods described in the literature. The proposed algorithm converges for phantom and in vivo data and only requires an initial estimate of the range of suitable regularization parameters. It demonstrates improved excitation homogeneity compared to published spoke-design methods and allows optimization for homogeneity with a subsequent reduction in the SAR burden. Moreover, excitation homogeneity and the SAR burden can be balanced against each other, enabling a further reduction in SAR at the cost of minor relaxations in excitation homogeneity. This feature makes the algorithm a good candidate for SAR limited sequences in ultra-high field imaging. The algorithm is validated using phantom and in vivo measurements obtained with a 16-channel transmit array at 9.4T.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA