Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 15: 1396446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799456

RESUMEN

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Asunto(s)
Ascariasis , Ascaris suum , Células TH1 , Células Th2 , Animales , Ascaris suum/inmunología , Ascariasis/inmunología , Ascariasis/parasitología , Células Th2/inmunología , Porcinos , Células TH1/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/parasitología , Pulmón/inmunología , Pulmón/parasitología , Larva/inmunología , Citocinas/metabolismo
2.
PLoS Negl Trop Dis ; 18(6): e0012279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889190

RESUMEN

BACKGROUND: The standard diagnosis of Ascaris lumbricoides and other soil-transmitted helminth (STH) infections relies on the detection of worm eggs by copromicroscopy. However, this method is dependent on worm patency and shows only limited accuracy in low-intensity infection settings. We aimed to decipher the diagnostic accuracy of different antibodies using various Ascaris antigens in reference to copromicroscopy and quantitative PCR (qPCR), four months after national STH preventative chemotherapy among school children in western Kenya. METHODOLOGY: STH infection status of 390 school children was evaluated via copromicroscopy (Kato-Katz and mini-FLOTAC) and qPCR. In parallel, Ascaris-specific antibody profiles against larval and adult worm lysates, and adult worm excretory-secretory (ES) products were determined by enzyme-linked immunosorbent assay. Antibody cross-reactivity was evaluated using the closely related zoonotic roundworm species Toxocara cati and Toxocara canis. The diagnostic accuracy of each antibody was evaluated using receiver operating curve analysis and the correspondent area under the curve (AUC). PRINCIPAL FINDINGS: Ascaris was the predominant helminth infection with an overall prevalence of 14.9% (58/390). The sensitivity of mini-FLOTAC and Kato-Katz for Ascaris diagnosis reached only 53.5% and 63.8%, respectively compared to qPCR. Although being more sensitive, qPCR values correlated with microscopic egg counts (R = -0.71, P<0.001), in contrast to antibody levels. Strikingly, IgG antibodies recognizing the ES products of adult Ascaris worms reliably diagnosed active Ascaris infection as determined by qPCR and microscopy, with IgG1 displaying the highest accuracy (AUC = 0.83, 95% CI: 0.75-0.91). CONCLUSION: IgG1 antibody responses against adult Ascaris-ES products hold a promising potential for complementing the standard fecal and molecular techniques employed for monitoring Ascaris infections. This is of particular importance in the context of deworming programs as the antibody diagnostic accuracy was independent of egg counts.


Asunto(s)
Anticuerpos Antihelmínticos , Ascariasis , Heces , Sensibilidad y Especificidad , Ascariasis/diagnóstico , Ascariasis/epidemiología , Ascariasis/inmunología , Humanos , Anticuerpos Antihelmínticos/sangre , Animales , Niño , Heces/parasitología , Femenino , Masculino , Kenia/epidemiología , Adolescente , Microscopía/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ascaris lumbricoides/inmunología , Ascaris lumbricoides/aislamiento & purificación , Antígenos Helmínticos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Ascaris/inmunología , Ascaris/aislamiento & purificación , Enfermedades Endémicas
3.
Adv Parasitol ; 123: 51-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38448148

RESUMEN

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Asunto(s)
Antihelmínticos , Zoonosis , Animales , Humanos , Zoonosis/prevención & control , Caenorhabditis elegans , Academias e Institutos , Investigación , Antihelmínticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA