Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 19(1): 185-193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29511396

RESUMEN

High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.

2.
Inorg Chem ; 56(5): 2576-2580, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28186732

RESUMEN

Yttrium oxide (yttria) with monoclinic structure exhibits unique optical properties; however, the monoclinic phase is thermodynamically stable only at pressures higher than ∼16 GPa. In this study, the effect of grain size and plastic strain on the stability of monoclinic phase is investigated by a high-pressure torsion (HPT) method. A cubic-to-monoclinic phase transition occurs at 6 GPa, which is ∼10 GPa below the theoretical transition pressure. Microstructure analysis shows that monoclinic phase forms in nanograins smaller than ∼22 nm and its fraction increases with plastic strain, while larger grains have a cubic structure. The band gap decreases and the photoluminescence features change from electric dipole to mainly magnetic dipole without significant decrease in the photoluminescence intensity after formation of the monoclinic phase. It is also suggested that monoclinic phase formation is due to the enhancement of effective internal pressure in nanograins.

3.
Chemosphere ; 355: 141785, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537708

RESUMEN

Photoreforming is a clean photocatalytic technology for simultaneous plastic waste degradation and hydrogen fuel production, but there are still limited active and stable catalysts for this process. This work introduces the brookite polymorph of TiO2 as an active photocatalyst for photoreforming with an activity higher than anatase and rutile polymorphs for both hydrogen production and plastic degradation. Commercial brookite successfully converts polyethylene terephthalate (PET) plastic to acetic acid under light. The high activity of brookite is attributed to good charge separation, slow decay and moderate electron trap energy, which lead to a higher generation of hydrogen and hydroxyl radicals and accordingly enhanced photo-oxidation of PET plastic. These results introduce brookite as a stable and active catalyst for the photoconversion of water contaminated with microplastics to value-added organic compounds and hydrogen.


Asunto(s)
Ácido Acético , Plásticos , Titanio/química , Hidrógeno
4.
Materials (Basel) ; 17(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38399104

RESUMEN

One of the most promising solutions to slow down CO2 emissions is the use of photocatalysis to produce hydrogen as a clean fuel. However, the efficiency of the photocatalysts is not at the desired level, and they usually need precious metal co-catalysts for reactions. In this study, to achieve efficient photocatalytic hydrogen production, a high-entropy oxide was synthesized by a mechano-thermal method. The synthesized high-entropy oxide had a bandgap of 2.45 eV, which coincided with both UV and visible light regions. The material could successfully produce hydrogen from water under light, but the main difference to conventional photocatalysts was that the photocatalysis proceeded without a co-catalyst addition. Hydrogen production increased with increasing time, and at the end of the 3 h period, 134.76 µmol/m2 h of hydrogen was produced. These findings not only introduce a new method for producing high-entropy photocatalysts but also confirm the high potential of high-entropy photocatalysts for hydrogen production without the need for precious metal co-catalysts.

5.
J Colloid Interface Sci ; 666: 22-34, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583207

RESUMEN

The generation of hydrogen as a clean energy carrier by photocatalysis, as a zero-emission technology, is of significant scientific and industrial interest. However, the main drawback of photocatalytic hydrogen generation from water splitting is its low efficiency compared to traditional chemical or electrochemical methods. Zinc oxide (ZnO) with the wurtzite phase is one of the most investigated photocatalysts for hydrogen production, but its activity still needs to be improved. In this study, an oxygen-deficient high-pressure ZnO rocksalt phase is stabilized using a high-pressure torsion (HPT) method, and the product is used for photocatalysis under ambient pressure. The simultaneous introduction of oxygen vacancies and the rocksalt phase effectively improved photocatalytic hydrogen production to levels comparable to benchmark P25 TiO2, due to improving light absorbance and providing active sites for photocatalysis without any negative effect on electron-hole recombination. These results confirm the high potential of high-pressure phases for photocatalytic hydrogen generation.

6.
Materials (Basel) ; 16(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36676324

RESUMEN

Superfunctional materials are defined as materials with specific properties being superior to the functions of engineering materials. Numerous studies introduced severe plastic deformation (SPD) as an effective process to improve the functional and mechanical properties of various metallic and non-metallic materials. Moreover, the concept of ultra-SPD-introducing shear strains over 1000 to reduce the thickness of sheared phases to levels comparable to atomic distances-was recently utilized to synthesize novel superfunctional materials. In this article, the application of ultra-SPD for controlling atomic diffusion and phase transformation and synthesizing new materials with superfunctional properties is discussed. The main properties achieved by ultra-SPD include: (i) high-temperature thermal stability in new immiscible age-hardenable aluminum alloys; (ii) room-temperature superplasticity for the first time in magnesium and aluminum alloys; (iii) high strength and high plasticity in nanograined intermetallics; (iv) low elastic modulus and high hardness in biocompatible binary and high-entropy alloys; (v) superconductivity and high strength in the Nb-Ti alloys; (vi) room-temperature hydrogen storage for the first time in magnesium alloys; and (vii) superior photocatalytic hydrogen production, oxygen production, and carbon dioxide conversion on high-entropy oxides and oxynitrides as a new family of photocatalysts.

7.
Materials (Basel) ; 16(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770088

RESUMEN

Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.

8.
Sci Rep ; 13(1): 470, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627307

RESUMEN

The development of new biomaterials with outstanding mechanical properties and high biocompatibility has been a significant challenge in the last decades. Nanocrystalline metals have provided new opportunities in producing high-strength biomaterials, but the biocompatibility of these nanometals needs to be improved. In this study, we introduce metal-protein nanocomposites as high-strength biomaterials with superior biocompatibility. Small proportions of bovine serum albumin (2 and 5 vol%), an abundant protein in the mammalian body, are added to titanium, and two nanocomposites are synthesized using a severe plastic deformation process of high-pressure torsion. These new biomaterials show not only a high hardness similar to nanocrystalline pure titanium but also exhibit better biocompatibility (including cellular metabolic activity, cell cycle parameters and DNA fragmentation profile) compared to nano-titanium. These results introduce a pathway to design new biocompatible composites by employing compounds from the human body.


Asunto(s)
Materiales Biocompatibles , Nanocompuestos , Materiales Biocompatibles/química , Ensayo de Materiales , Nanocompuestos/química , Proteínas , Titanio/química
9.
Materials (Basel) ; 15(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160952

RESUMEN

The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion and pitting became higher in both the solutions, with higher passivation capability observed with increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with reports on nanocrystalline binary Fe-Cr alloys and stainless steels processed by SPD, where grain refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior with respect to grain refinement is discussed, based on the passivation process of Fe-Cr alloys and on the influence of the core effects of HEAs on the passivation process.

10.
Sci Rep ; 12(1): 5677, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383225

RESUMEN

Impacts by small solar system bodies (meteoroids, asteroids, comets and transitional objects) are characterized by a combination of energy dynamics and chemical modification on both terrestrial and small solar system bodies. In this context, the discovery of glycine amino acid in meteorites and comets has led to a hypothesis that impacts by astronomical bodies could contribute to delivery and polymerization of amino acids in the early Earth to generate proteins as essential molecules for life. Besides the possibility of abiotic polymerization of glycine, its decomposition by impacts could generate reactive groups to form other essential organic biomolecules. In this study, the high-pressure torsion (HPT) method, as a new platform for simulation of impacts by small solar system bodies, was applied to glycine. In comparison with high-pressure shock experiments, the HPT method simultaneously introduces high pressure and deformation strain. It was found that glycine was not polymerized in the experimental condition assayed, but partially decomposed to ethanol under pressures of 1 and 6 GPa and shear strains of < 120 m/m. The detection of ethanol implies the inherent availability of remaining nitrogen-containing groups, which can incorporate to the formation of other organic molecules at the impact site. In addition, this finding highlights a possibility of the origin of ethanol previously detected in comets.


Asunto(s)
Glicina , Meteoroides , Aminoácidos , Planeta Tierra , Medio Ambiente Extraterrestre , Sistema Solar
11.
Mater Sci Eng C Mater Biol Appl ; 112: 110908, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409062

RESUMEN

Despite significant studies on mechanical properties of high-entropy alloys (HEAs), there have been limited attempts to examine the biocompatibility of these alloys. In this study, a lattice-softened high-entropy alloy TiAlFeCoNi with ultrahigh hardness (examined by Vickers method), low elastic modulus (examined by nanoindentation) and superior activity for cell proliferation/viability/cytotoxicity (examined by MTT assay) was developed by employing imperial data and thermodynamic calculations. The designated alloy after casting was processed further by high-pressure torsion (HPT) to improve its hardness via the introduction of nanograins, dislocations and order-disorder transformation. The TiAlFeCoNi alloy with the L21-BCC crystal structure exhibited 170-580% higher hardness and 260-1020% better cellular metabolic activity compared to titanium and Ti-6Al-7Nb biomaterials, suggesting the high potential of HEAs for future biomedical applications.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Aleaciones/farmacología , Aluminio/química , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Módulo de Elasticidad , Entropía , Dureza , Hierro/química , Ratones , Níquel/química , Resistencia a la Tracción , Titanio/química
12.
Materials (Basel) ; 12(17)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470536

RESUMEN

This paper is a collection of selected contributions of the 1st International Workshop on Mechanochemistry of Metal Hydrides that was held in Oslo in May 2018. In this paper, the recent developments in the use of mechanochemistry to synthesize and modify metal hydrides are reviewed. A special emphasis is made on new techniques beside the traditional way of ball milling. High energy milling, ball milling under hydrogen reactive gas, cryomilling and severe plastic deformation techniques such as High-Pressure Torsion (HPT), Surface Mechanical Attrition Treatment (SMAT) and cold rolling are discussed. The new characterization method of in-situ X-ray diffraction during milling is described.

13.
Sci Rep ; 8(1): 6740, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712959

RESUMEN

Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

14.
Materials (Basel) ; 11(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011826

RESUMEN

Aluminium-tin-based alloys with different compositions were synthesized by a high-pressure torsion (HPT) method. The effect of different alloying elements and processing routes on the hydrogen generation performance of the alloys was investigated. The results show that Zn can enhance the hydrogen generation rate and yield by promoting pitting corrosion. The highest reactivity in water was achieved for an Al-30wt %Sn-10wt %Zn alloy. Detailed analysis of the Al-30wt %Sn-10wt %Zn alloy shows that increasing the shear strain and the resultant formation of ultrafine grains and phase mixing enhance the hydrogen generation rate through the effects of both nanogalvanic cells and pitting corrosion.

15.
Sci Rep ; 7(1): 2662, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572678

RESUMEN

Superplasticity, a phenomenon of high tensile elongation in polycrystalline materials, is highly effective in fabrication of complex parts by metal forming without any machining. Superplasticity typically occurs only at elevated homologous temperatures, where thermally-activated deformation mechanisms dominate. Here, we report the first observation of room-temperature superplasticity in a magnesium alloy, which challenges the commonly-held view of the poor room-temperature plasticity of magnesium alloys. An ultrafine-grained magnesium-lithium (Mg-8 wt.%Li) alloy produced by severe plastic deformation demonstrated 440% elongation at room temperature (0.35 T m) with a strain-rate sensitivity of 0.37. These unique properties were associated with enhanced grain-boundary sliding, which was approximately 60% of the total elongation. This enhancement originates from fast grain-boundary diffusion caused by the Li segregation along the grain boundaries and the formation of Li-rich interphases. This discovery introduces a new approach for controlling the room-temperature superplasticity by engineering grain-boundary composition and diffusion, which is of importance in metal forming technology without heating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA