Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 89(3)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33318139

RESUMEN

The mechanisms by which Candida glabrata resists host defense peptides and caspofungin are incompletely understood. To identify transcriptional regulators that enable C. glabrata to withstand these classes of stressors, a library of 215 C. glabrata transcriptional regulatory deletion mutants was screened for susceptibility to both protamine and caspofungin. We identified eight mutants that had increased susceptibility to both host defense peptides and caspofungin. Of these mutants, six were deleted for genes that were predicted to specify proteins involved in histone modification. These genes were ADA2, GCN5, SPT8, HOS2, RPD3, and SPP1 Deletion of ADA2, GCN5, and RPD3 also increased susceptibility to mammalian host defense peptides. The Δada2 and Δgcn5 mutants had increased susceptibility to other stressors, such as H2O2 and SDS. In the Galleria mellonella model of disseminated infection, the Δada2 and Δgcn5 mutants had attenuated virulence, whereas in neutropenic mice, the virulence of the Δada2 and Δrpd3 mutants was decreased. Thus, histone modification plays a central role in enabling C. glabrata to survive host defense peptides and caspofungin, and Ada2 and Rpd3 are essential for the maximal virulence of this organism during disseminated infection.


Asunto(s)
Candida glabrata/genética , Candida glabrata/patogenicidad , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/genética , Factores de Transcripción/genética , Virulencia/genética , Eliminación de Gen , Variación Genética , Humanos , Mutación
2.
PLoS Pathog ; 15(8): e1007460, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381597

RESUMEN

Candida auris is an emerging, multi-drug resistant, health care-associated fungal pathogen. Its predominant prevalence in hospitals and nursing homes indicates its ability to adhere to and colonize the skin, or persist in an environment outside the host-a trait unique from other Candida species. Besides being associated globally with life-threatening disseminated infections, C. auris also poses significant clinical challenges due to its ability to adhere to polymeric surfaces and form highly drug-resistant biofilms. Here, we performed bioinformatic studies to identify the presence of adhesin proteins in C. auris, with sequence as well as 3-D structural homologies to the major adhesin/invasin of C. albicans, Als3. Anti-Als3p antibodies generated by vaccinating mice with NDV-3A (a vaccine based on the N-terminus of Als3 protein formulated with alum) recognized C. auris in vitro, blocked its ability to form biofilms and enhanced macrophage-mediated killing of the fungus. Furthermore, NDV-3A vaccination induced significant levels of C. auris cross-reactive humoral and cellular immune responses, and protected immunosuppressed mice from lethal C. auris disseminated infection, compared to the control alum-vaccinated mice. The mechanism of protection is attributed to anti-Als3p antibodies and CD4+ T helper cells activating tissue macrophages. Finally, NDV-3A potentiated the protective efficacy of the antifungal drug micafungin, against C. auris candidemia. Identification of Als3-like adhesins in C. auris makes it a target for immunotherapeutic strategies using NDV-3A, a vaccine with known efficacy against other Candida species and safety as well as efficacy in clinical trials. Considering that C. auris can be resistant to almost all classes of antifungal drugs, such an approach has profound clinical relevance.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Linfocitos T CD4-Positivos/inmunología , Candida/inmunología , Candidiasis/prevención & control , Resistencia a Múltiples Medicamentos/inmunología , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Compuestos de Alumbre/química , Animales , Candidiasis/inmunología , Candidiasis/microbiología , Ratones , Ratones Endogámicos ICR , Vacunación
3.
PLoS Pathog ; 14(5): e1007056, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29746596

RESUMEN

Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.


Asunto(s)
Proteínas Fúngicas/inmunología , Proteínas Fúngicas/farmacología , Acinetobacter/efectos de los fármacos , Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/metabolismo , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos/inmunología , Bacterias/inmunología , Infecciones Bacterianas , Proteínas de la Membrana Bacteriana Externa/metabolismo , Vacunas Bacterianas/inmunología , Biopelículas , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Inmunización Pasiva , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Vacunación
4.
Clin Infect Dis ; 66(12): 1928-1936, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697768

RESUMEN

Background: Recurrent vulvovaginal candidiasis (RVVC) is a problematic form of mucosal Candida infection, characterized by repeated episodes per year. Candida albicans is the most common cause of RVVC. Currently, there are no immunotherapeutic treatments for RVVC. Methods: This exploratory randomized, double-blind, placebo-controlled trial evaluated an immunotherapeutic vaccine (NDV-3A) containing a recombinant C. albicans adhesin/invasin protein for prevention of RVVC. Results: The study in 188 women with RVVC (n = 178 evaluable) showed that 1 intramuscular dose of NDV-3A was safe and generated rapid and robust B- and T-cell immune responses. Post hoc exploratory analyses revealed a statistically significant increase in the percentage of symptom-free patients at 12 months after vaccination (42% vaccinated vs 22% placebo; P = .03) and a doubling in median time to first symptomatic episode (210 days vaccinated vs 105 days placebo) for the subset of patients aged <40 years (n = 137). The analysis of evaluable patients, which combined patients aged <40 years (77%) and ≥40 years (23%), trended toward a positive impact of NDV-3A versus placebo (P = .099). Conclusions: In this unprecedented study of the effectiveness of a fungal vaccine in humans, NDV-3A administered to women with RVVC was safe and highly immunogenic and reduced the frequency of symptomatic episodes of vulvovaginal candidiasis for up to 12 months in women aged <40 years. These results support further development of NDV-3A vaccine and provide guidance for meaningful clinical endpoints for immunotherapeutic management of RVVC. Clinical Trials Registration: NCT01926028.


Asunto(s)
Candidiasis Vulvovaginal/terapia , Proteínas Fúngicas/uso terapéutico , Vacunas Fúngicas/uso terapéutico , Inmunoterapia , Adolescente , Adulto , Linfocitos B/inmunología , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/inmunología , Método Doble Ciego , Femenino , Vacunas Fúngicas/efectos adversos , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Persona de Mediana Edad , Recurrencia , Linfocitos T/inmunología , Adulto Joven
5.
J Clin Microbiol ; 56(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30068535

RESUMEN

Mucormycosis is an aggressive, life-threatening infection caused by fungi in the order Mucorales. The current diagnosis of mucormycosis relies on mycological cultures, radiology and histopathology. These methods lack sensitivity and are most definitive later in the course of infection, resulting in the prevention of timely intervention. PCR-based approaches have shown promising potential in rapidly diagnosing mucormycosis. The spore coating protein homolog encoding CotH genes are uniquely and universally present among Mucorales. Thus, CotH genes are potential targets for the rapid diagnosis of mucormycosis. We infected mice with different Mucorales known to cause human mucormycosis and investigated whether CotH could be PCR amplified from biological fluids. Uninfected mice and those with aspergillosis were used to determine the specificity of the assay. CotH was detected as early as 24 h postinfection in plasma, urine, and bronchoalveolar lavage (BAL) samples from mice infected intratracheally with Rhizopus delemar, Rhizopus oryzae, Mucor circinelloides, Lichtheimia corymbifera, or Cunninghamella bertholletiae but not from samples taken from uninfected mice or mice infected with Aspergillus fumigatus Detection of CotH from urine samples was more reliable than from plasma or BAL fluid. Using the receiver operating characteristic method, the sensitivity and the specificity of the assay were found to be 90 and 100%, respectively. Finally, CotH was PCR amplified from urine samples of patients with proven mucormycosis. Thus, PCR amplification of CotH is a promising target for the development of a reliable, sensitive, and simple method of early diagnosis of mucormycosis.


Asunto(s)
Mucorales/aislamiento & purificación , Mucormicosis/diagnóstico , Reacción en Cadena de la Polimerasa , Animales , Aspergilosis/diagnóstico , Aspergilosis/genética , ADN de Hongos/análisis , ADN de Hongos/genética , Proteínas Fúngicas/genética , Humanos , Ratones , Mucorales/genética , Mucormicosis/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
J Antimicrob Chemother ; 72(2): 462-466, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27798213

RESUMEN

OBJECTIVES: Previously we demonstrated the benefit of isavuconazole in treating murine mucormycosis due to Rhizopus. We wanted to determine the efficacy of isavuconazole in treating murine mucormycosis caused by Mucor, the second most common cause of the disease. Furthermore, because we previously determined that Rhizopus possesses the target enzyme for echinocandins and micafungin has activity against murine mucormycosis, we compared the activity of combination therapy (isavuconazole + micafungin) with placebo, either drug alone or standard therapy of liposomal amphotericin B (LAmB) in treating pulmonary murine mucormycosis caused by Rhizopus delemar. METHODS: In vitro susceptibility to isavuconazole of Mucorales was evaluated using the CLSI M38-A2 method. Immunosuppressed mice were intratracheally infected with either Mucor circinelloides or R. delemar. Treatment with isavuconazole (orally), micafungin (intraperitoneally), a combination of both or LAmB (intravenously) was compared, with survival and tissue fungal burden serving as primary and secondary endpoints, respectively. RESULTS: Isavuconazole was as effective as LAmB in prolonging survival of mice infected with M. circinelloides. Against R. delemar-induced mucormycosis, all monotherapy treatments significantly improved survival of mice versus placebo without showing superiority over one another. However, LAmB was superior in lowering fungal burden in target organs. Although combination therapy of isavuconazole + micafungin did not enhance survival of mice over monotherapy, antagonism was not detected between the two drugs. CONCLUSION: Isavuconazole is effective in treating pulmonary murine mucormycosis due to Mucor. In addition, combination therapy of isavuconazole + micafungin does not demonstrate synergy and it is not antagonistic against Rhizopus-induced mucormycosis.


Asunto(s)
Antifúngicos/uso terapéutico , Equinocandinas/uso terapéutico , Lipopéptidos/uso terapéutico , Mucor/efectos de los fármacos , Mucormicosis/tratamiento farmacológico , Nitrilos/uso terapéutico , Piridinas/uso terapéutico , Rhizopus/efectos de los fármacos , Triazoles/uso terapéutico , Animales , Quimioterapia Combinada , Pulmón/microbiología , Masculino , Micafungina , Ratones , Pruebas de Sensibilidad Microbiana
7.
PLoS Pathog ; 11(5): e1004842, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25974051

RESUMEN

Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Deferoxamina/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucormicosis/tratamiento farmacológico , Rhizopus/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Virulencia/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Quelantes del Hierro/farmacología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Mucormicosis/microbiología , Sideróforos/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(51): E5555-63, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489065

RESUMEN

Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans.


Asunto(s)
Vacunas Bacterianas/uso terapéutico , Enfermedades Cutáneas Bacterianas/terapia , Infecciones Estafilocócicas/prevención & control , Inmunidad Adaptativa , Animales , Modelos Animales de Enfermedad , Interleucina-17/metabolismo , Interleucinas/metabolismo , Ratones , Linfocitos T/inmunología , Interleucina-22
9.
Emerg Med J ; 34(4): 205-211, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28119351

RESUMEN

BACKGROUND: First rib fractures are considered indicators of increased morbidity and mortality in major trauma. However, this has not been definitively proven. With an increased use of CT and the potential increase in detection of first rib fractures, re-evaluation of these injuries as a marker for life-threatening injuries is warranted. METHODS: Patients sustaining rib fractures between January 2012 and December 2013 were investigated using data from the UK Trauma Audit and Research Network. The prevalence of life-threatening injuries was compared in patients with first rib fractures and those with other rib fractures. Multivariate logistic regression was performed to determine the association between first rib fractures, injury severity, polytrauma and mortality. RESULTS: There were 1683 patients with first rib fractures and 8369 with fractures of other ribs. Life-threatening intrathoracic and extrathoracic injuries were more likely in patients with first rib fractures. The presence of first rib fractures was a significant predictor of injury severity (Injury Severity Score >15) and polytrauma, independent of mechanism of injury, age and gender with an adjusted OR of 2.64 (95% CI 2.33 to 3.00) and 2.01 (95% CI 1.80 to 2.25), respectively. Risk-adjusted mortality was the same in patients with first rib fractures and those with other rib fractures (adjusted OR 0.97, 95% CI 0.79 to 1.19). CONCLUSION: First rib fractures are a marker of life-threatening injuries in major trauma, though they do not independently increase mortality. Management of patients with first rib fractures should focus on identification and treatment of associated life-threatening injuries.


Asunto(s)
Fracturas de las Costillas/etiología , Fracturas de las Costillas/mortalidad , Costillas/fisiopatología , Heridas y Lesiones/complicaciones , Accidentes por Caídas/estadística & datos numéricos , Accidentes de Tránsito/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Costillas/lesiones , Traumatismos Vertebrales/diagnóstico , Traumatismos Vertebrales/etiología , Traumatismos Torácicos/diagnóstico , Traumatismos Torácicos/etiología , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/tendencias , Reino Unido
10.
Infect Immun ; 83(11): 4427-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26351278

RESUMEN

Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSI) in humans. Moreover, the high frequency of recurring SSSI due to S. aureus, particularly methicillin-resistant S. aureus (MRSA) strains, suggests that infection induces suboptimal anamnestic defenses. The present study addresses the hypothesis that interleukin-17A (IL-17A) and IL-22 play distinct roles in immunity to cutaneous and invasive MRSA infection in a mouse model of SSSI. Mice were treated with specific neutralizing antibodies against IL-17A and/or IL-22 and infected with MRSA, after which the severity of infection and host immune response were determined. Neutralization of either IL-17A or IL-22 reduced T cell and neutrophil infiltration and host defense peptide elaboration in lesions. These events corresponded with increased abscess severity, MRSA viability, and CFU density in skin. Interestingly, combined inhibition of IL-17A and IL-22 did not worsen abscesses but did increase gamma interferon (IFN-γ) expression at these sites. The inhibition of IL-22 led to a reduction in IL-17A expression, but not vice versa. These results suggest that the expression of IL-17A is at least partially dependent on IL-22 in this model. Inhibition of IL-17A but not IL-22 led to hematogenous dissemination to kidneys, which correlated with decreased T cell infiltration in renal tissue. Collectively, these findings indicate that IL-17A and IL-22 have complementary but nonredundant roles in host defense against cutaneous versus hematogenous infection. These insights may support targeted immune enhancement or other novel approaches to address the challenge of MRSA infection.


Asunto(s)
Enfermedades Hematológicas/inmunología , Interleucina-17/inmunología , Interleucinas/inmunología , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Animales , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/microbiología , Humanos , Interleucina-17/genética , Interleucinas/genética , Masculino , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/microbiología , Interleucina-22
11.
Antimicrob Agents Chemother ; 58(4): 2450-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492363

RESUMEN

We studied the in vitro and in vivo efficacies of the investigational drug isavuconazole against mucormycosis due to Rhizopus delemar. Isavuconazole was effective, with MIC and minimal fungicidal concentration (MFC) values ranging between 0.125 and 1.00 µg/ml. A high dose of isavuconazole prolonged the survival time and lowered the tissue fungal burden of cyclophosphamide/cortisone acetate-treated mice infected with R. delemar and was as effective as a high-dose liposomal amphotericin B treatment. These results support the further development of this azole against mucormycosis.


Asunto(s)
Antifúngicos/uso terapéutico , Mucormicosis/prevención & control , Nitrilos/uso terapéutico , Piridinas/uso terapéutico , Triazoles/uso terapéutico , Animales , Terapia de Inmunosupresión , Masculino , Ratones , Ratones Endogámicos ICR
12.
Infect Immun ; 81(7): 2528-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630968

RESUMEN

During hematogenously disseminated infection, blood-borne Candida albicans invades the endothelial cell lining of the vasculature to invade the deep tissues. Although the C. albicans Als3 invasin is critical for invasion and damage of endothelial cells in vitro, a C. albicans als3Δ/Δ mutant has normal virulence in the mouse model of disseminated infection. We hypothesized that the contribution of Als3 to virulence is obscured by the presence of additional C. albicans invasins. To elucidate the in vivo function of Als3, we heterologously expressed C. albicans ALS3 in Candida glabrata, a yeast that lacks a close ALS3 ortholog and has low virulence in mice. We found that following intravenous inoculation into mice, the ALS3-expressing strain preferentially trafficked to the brain, where it induced significantly elevated levels of myeloperoxidase, tumor necrosis factor, monocyte chemoattractant protein 1, and gamma interferon. Also, the ALS3-expressing strain had enhanced adherence to and invasion of human brain microvascular endothelial cells in vitro, demonstrating a potential mechanism for ALS3-mediated neurotropism. In addition, upon initiation of infection, the ALS3-expressing strain had increased trafficking to the cortex of the kidneys. With prolonged infection, this strain persisted in the kidneys at significantly higher levels than the control strain but did not induce an elevated inflammatory response. Finally, the ALS3-expressing strain had increased resistance to neutrophil killing in vitro. These results indicate that during disseminated infection, Als3 mediates initial trafficking to the brain and renal cortex and contributes to fungal persistence in the kidneys.


Asunto(s)
Candida albicans/patogenicidad , Candida glabrata/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Animales , Encéfalo/microbiología , Encéfalo/patología , Candida albicans/genética , Candida albicans/inmunología , Candida glabrata/genética , Candidiasis/microbiología , Adhesión Celular , Línea Celular , Recuento de Colonia Microbiana , Endocitosis , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-8/metabolismo , Corteza Renal/microbiología , Corteza Renal/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Neutrófilos/microbiología , Peroxidasa/metabolismo , Transporte de Proteínas
13.
Mol Microbiol ; 77(3): 587-604, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545847

RESUMEN

Rhizopus oryzae is the most common cause of mucormycosis, an angioinvasive fungal infection that causes more then 50% mortality rate despite first-line therapy. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to mucormycosis. The high affinity iron permease gene (FTR1) is required for R. oryzae iron transport in iron-depleted environments. Here we demonstrate that FTR1 is required for full virulence of R. oryzae in mice. We show that FTR1 is expressed during infection in diabetic ketoacidosis (DKA) mice. In addition, we disrupted FTR1 by double cross-over homologous recombination, but multinucleated R. oryzae could not be forced to segregate to a homokaryotic null allele. Nevertheless, a reduction of the relative copy number of FTR1 and inhibition of FTR1 expression by RNAi compromised the ability of R. oryzae to acquire iron in vitro and reduced its virulence in DKA mice. Importantly, passive immunization with anti-Ftr1p immune sera protected DKA mice from infection with R. oryzae. Thus, FTR1 is a virulence factor for R. oryzae, and anti-Ftr1p passive immunotherapy deserves further evaluation as a strategy to improve outcomes of deadly mucormycosis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mucormicosis/microbiología , Rhizopus/enzimología , Rhizopus/patogenicidad , Factores de Virulencia/metabolismo , Animales , Cetoacidosis Diabética/microbiología , Proteínas Fúngicas/genética , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Rhizopus/genética , Factores de Virulencia/genética
14.
Antimicrob Agents Chemother ; 55(4): 1768-70, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21263057

RESUMEN

Liposomal amphotericin B (LAmB) combined wither either micafungin or deferasirox was synergistic in previous murine studies with mucormycosis or aspergillosis. We hypothesized that triple therapy using LAmB, micafungin, and deferasirox could further improve outcomes of mucormycosis or aspergillosis. Triple therapy improved survival and reduced tissue fungal burden of mice with mucormycosis and to a lesser extent with aspergillosis. Continued investigation into the use of triple therapy against mucormycosis and aspergillosis is warranted.


Asunto(s)
Aspergilosis/tratamiento farmacológico , Equinocandinas/uso terapéutico , Quelantes del Hierro/uso terapéutico , Mucormicosis/tratamiento farmacológico , Polienos/uso terapéutico , Anfotericina B/uso terapéutico , Animales , Antifúngicos/uso terapéutico , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Modelos Animales de Enfermedad , Lipopéptidos/uso terapéutico , Micafungina , Ratones , Ratones Endogámicos BALB C , Rhizopus/efectos de los fármacos , Rhizopus/patogenicidad
15.
PLoS Pathog ; 5(12): e1000703, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041174

RESUMEN

We sought to define protective mechanisms of immunity to Staphylococcus aureus and Candida albicans bloodstream infections in mice immunized with the recombinant N-terminus of Als3p (rAls3p-N) vaccine plus aluminum hydroxide (Al(OH(3)) adjuvant, or adjuvant controls. Deficiency of IFN-gamma but not IL-17A enhanced susceptibility of control mice to both infections. However, vaccine-induced protective immunity against both infections required CD4+ T-cell-derived IFN-gamma and IL-17A, and functional phagocytic effectors. Vaccination primed Th1, Th17, and Th1/17 lymphocytes, which produced pro-inflammatory cytokines that enhanced phagocytic killing of both organisms. Vaccinated, infected mice had increased IFN-gamma, IL-17, and KC, increased neutrophil influx, and decreased organism burden in tissues. In summary, rAls3p-N vaccination induced a Th1/Th17 response, resulting in recruitment and activation of phagocytes at sites of infection, and more effective clearance of S. aureus and C. albicans from tissues. Thus, vaccine-mediated adaptive immunity can protect against both infections by targeting microbes for destruction by innate effectors.


Asunto(s)
Inmunidad Adaptativa , Candidiasis/inmunología , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/inmunología , Infecciones Estafilocócicas/inmunología , Subgrupos de Linfocitos T/inmunología , Adyuvantes Inmunológicos/farmacología , Traslado Adoptivo , Hidróxido de Aluminio/inmunología , Animales , Candida albicans/inmunología , Candidiasis/prevención & control , Femenino , Interferón gamma , Interleucina-17/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/inmunología , Células TH1/inmunología , Vacunas/inmunología
16.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462434

RESUMEN

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Asunto(s)
Mucorales/patogenicidad , Mucormicosis/patología , Micotoxinas/metabolismo , Ricina/metabolismo , Animales , Antitoxinas/inmunología , Antitoxinas/farmacología , Antitoxinas/uso terapéutico , Apoptosis , Permeabilidad Capilar , Células Cultivadas , Reacciones Cruzadas , Humanos , Hifa/química , Hifa/patogenicidad , Lectinas/metabolismo , Ratones , Mucorales/química , Mucorales/clasificación , Mucorales/genética , Mucormicosis/microbiología , Mucormicosis/prevención & control , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/inmunología , Necrosis , Interferencia de ARN , Rhizopus/química , Rhizopus/genética , Rhizopus/patogenicidad , Proteínas Inactivadoras de Ribosomas/metabolismo , Ricina/química , Ricina/inmunología , Virulencia/efectos de los fármacos , Virulencia/genética
17.
J Clin Invest ; 117(9): 2649-57, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17786247

RESUMEN

Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical isolates of Mucorales at concentrations well below clinically achievable serum levels. When administered to diabetic ketoacidotic or neutropenic mice with mucormycosis, deferasirox significantly improved survival and decreased tissue fungal burden, with an efficacy similar to that of liposomal amphotericin B. Deferasirox treatment also enhanced the host inflammatory response to mucormycosis. Most importantly, deferasirox synergistically improved survival and reduced tissue fungal burden when combined with liposomal amphotericin B. These data support clinical investigation of adjunctive deferasirox therapy to improve the poor outcomes of mucormycosis with current therapy. As iron availability is integral to the pathogenesis of other infections (e.g., tuberculosis, malaria), broader investigation of deferasirox as an antiinfective treatment is warranted.


Asunto(s)
Benzoatos/uso terapéutico , Quelantes del Hierro/uso terapéutico , Hierro/metabolismo , Mucormicosis/tratamiento farmacológico , Mucormicosis/metabolismo , Triazoles/uso terapéutico , Anfotericina B/uso terapéutico , Animales , Deferasirox , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/patología , Quimioterapia Combinada , Liposomas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mucorales/efectos de los fármacos , Mucorales/inmunología , Mucormicosis/inmunología , Mucormicosis/patología , Tasa de Supervivencia , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología
18.
J Antimicrob Chemother ; 65(2): 289-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19942619

RESUMEN

OBJECTIVES: Increased bone marrow iron levels in patients with haematological malignancies is an independent risk factor for developing invasive pulmonary aspergillosis (IPA), suggesting an important role for iron uptake in the pathogenesis of IPA. We sought to determine the potential for combination therapy with the iron chelator deferasirox + liposomal amphotericin B (LAmB) to improve the outcome of murine IPA compared with LAmB monotherapy. METHODS: In vitro MIC and minimum fungicidal concentration (MFC) values of the iron chelator, deferasirox, for Aspergillus fumigatus were determined by microdilution assay. In addition, we studied the efficacy of deferasirox alone or combined with LAmB in treating immunocompromised mice infected with A. fumigatus via inhalation. RESULTS: Deferasirox was cidal in vitro against A. fumigatus, with an MIC and MFC of 25 and 50 mg/L, respectively. Deferasirox monotherapy modestly prolonged survival of mice with IPA. Combination deferasirox + LAmB therapy synergistically improved survival and reduced lung fungal burden compared with either monotherapy alone. CONCLUSIONS: Iron chelation therapy with deferasirox alone or in combination with LAmB is effective in treating experimental IPA. Further study of deferasirox is warranted as adjunctive therapy for IPA infections.


Asunto(s)
Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Benzoatos/uso terapéutico , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Triazoles/uso terapéutico , Anfotericina B/farmacología , Animales , Aspergillus fumigatus/efectos de los fármacos , Benzoatos/farmacología , Deferasirox , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Análisis de Supervivencia , Resultado del Tratamiento , Triazoles/farmacología
19.
PLoS Pathog ; 4(11): e1000217, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023418

RESUMEN

Iron sequestration by host iron-binding proteins is an important mechanism of resistance to microbial infections. Inside oral epithelial cells, iron is stored within ferritin, and is therefore not usually accessible to pathogenic microbes. We observed that the ferritin concentration within oral epithelial cells was directly related to their susceptibility to damage by the human pathogenic fungus, Candida albicans. Thus, we hypothesized that host ferritin is used as an iron source by this organism. We found that C. albicans was able to grow on agar at physiological pH with ferritin as the sole source of iron, while the baker's yeast Saccharomyces cerevisiae could not. A screen of C. albicans mutants lacking components of each of the three known iron acquisition systems revealed that only the reductive pathway is involved in iron utilization from ferritin by this fungus. Additionally, C. albicans hyphae, but not yeast cells, bound ferritin, and this binding was crucial for iron acquisition from ferritin. Transcriptional profiling of wild-type and hyphal-defective C. albicans strains suggested that the C. albicans invasin-like protein Als3 is required for ferritin binding. Hyphae of an Deltaals3 null mutant had a strongly reduced ability to bind ferritin and these mutant cells grew poorly on agar plates with ferritin as the sole source of iron. Heterologous expression of Als3, but not Als1 or Als5, two closely related members of the Als protein family, allowed S. cerevisiae to bind ferritin. Immunocytochemical localization of ferritin in epithelial cells infected with C. albicans showed ferritin surrounding invading hyphae of the wild-type, but not the Deltaals3 mutant strain. This mutant was also unable to damage epithelial cells in vitro. Therefore, C. albicans can exploit iron from ferritin via morphology dependent binding through Als3, suggesting that this single protein has multiple virulence attributes.


Asunto(s)
Candida albicans/metabolismo , Ferritinas/metabolismo , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Línea Celular Tumoral , Proteínas Fúngicas/fisiología , Humanos , Hifa/química
20.
PLoS Biol ; 5(3): e64, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17311474

RESUMEN

Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.


Asunto(s)
Cadherinas/metabolismo , Endocitosis , Proteínas Fúngicas/metabolismo , Animales , Células CHO , Candida albicans/fisiología , Células Cultivadas , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteínas Fúngicas/aislamiento & purificación , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA