Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Cell ; 161(3): 433-434, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910202

RESUMEN

The existence, nature, and role of highly ordered membrane domains, often referred to as lipid rafts, have been highly debated by cell biologists for many years. In this issue, Raghupathy et al. describe molecular mechanisms leading to the formation of ordered lipid-protein clusters.


Asunto(s)
Proteínas Ligadas a Lípidos/metabolismo , Animales
3.
Nat Rev Mol Cell Biol ; 18(6): 361-374, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28356571

RESUMEN

Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Animales , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo
4.
Nat Methods ; 21(7): 1171-1174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834747

RESUMEN

Fluorescence microscopy is limited by photoconversion due to continuous illumination, which results in not only photobleaching but also conversion of fluorescent molecules into species of different spectral properties through photoblueing. Here, we determined different fluorescence parameters of photoconverted products for various fluorophores under standard confocal and stimulated emission depletion (STED) microscopy conditions. We observed changes in both fluorescence spectra and lifetimes that can cause artifacts in quantitative measurements, which can be avoided by using exchangeable dyes.


Asunto(s)
Artefactos , Microscopía Confocal , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Microscopía Confocal/métodos , Colorantes Fluorescentes/química , Fotoblanqueo
6.
Biophys J ; 123(6): 745-755, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38384131

RESUMEN

Fluorescence correlation spectroscopy (FCS) techniques are well-established tools to investigate molecular dynamics in confocal and super-resolution microscopy. In practice, users often need to handle a variety of sample- or hardware-related artifacts, an example being peak artifacts created by bright, slow-moving clusters. Approaches to address peak artifacts exist, but measurements suffering from severe artifacts are typically nonanalyzable. Here, we trained a one-dimensional U-Net to automatically identify peak artifacts in fluorescence time series and then analyzed the purified, nonartifactual fluctuations by time-series editing. We show that, in samples with peak artifacts, the transit time and particle number distributions can be restored in simulations and validated the approach in two independent biological experiments. We propose that it is adaptable for other FCS artifacts, such as detector dropout, membrane movement, or photobleaching. In conclusion, this simulation-based, automated, open-source pipeline makes measurements analyzable that previously had to be discarded and extends every FCS user's experimental toolbox.


Asunto(s)
Artefactos , Redes Neurales de la Computación , Fotones , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia/métodos
7.
Biol Chem ; 404(2-3): 87-106, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36698322

RESUMEN

Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.


Asunto(s)
Peroxisomas , Microscopía Fluorescente/métodos
8.
Chemistry ; 29(16): e202203468, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36477948

RESUMEN

Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.

9.
Chemphyschem ; 24(12): e202300125, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946252

RESUMEN

A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.


Asunto(s)
Colorantes Fluorescentes , Luz , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Lípidos
10.
J Microsc ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054327

RESUMEN

Molecular mobility is an important measure in biological functionality, as molecules have to diffuse to meet and interact and perform actions. Measurement of mobility requires specific tools such as fluorescence correlation spectroscopy (FCS). Especially, combination with superresolution stimulated emission depletion microscopy (STED-FCS), whether in a point- or beam-scanning mode, has proven valuable for determination of anomalous diffusion. STED-FCS however relies on an accurate calibration of the effective observation spot formed for different laser powers of the additional STED laser. This poster article highlights the need for calibration measurements and outlines that rather simple procedures involving acetone cover-glass surface cleaning only, instead of piranha cover-glass surface cleaning, and point instead of more complex scanning STED-FCS are sufficient for calibration.

11.
Microsc Microanal ; 29(6): 2014-2025, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944034

RESUMEN

Correlative microscopy is a powerful technique that combines the advantages of multiple imaging modalities to achieve a comprehensive understanding of investigated samples. For example, fluorescence microscopy provides unique functional contrast by imaging only specifically labeled components, especially in biological samples. However, the achievable structural information on the sample in its full complexity is limited. Here, the intrinsic label-free carbon contrast of water window soft X-ray microscopy can complement fluorescence images in a correlative approach ultimately combining nanoscale structural resolution with functional contrast. However, soft X-ray microscopes are complex and elaborate, and are usually installed on large-scale synchrotron radiation sources due to the demanding photon flux requirements. Yet, with modern high-power lasers it has become possible to generate sufficient photon flux from laser-produced plasmas, thus enabling laboratory-based setups. Here, we present a compact table-top soft X-ray microscope with an integrated epifluorescence modality for "in situ" correlative imaging. Samples remain in place when switching between modalities, ensuring identical measurement conditions and avoiding sample alteration or destruction. We demonstrate our new method by multimodal images of several exemplary samples ranging from nanoparticles to various multicolor labeled cell types. A structural resolution of down to 50 nm was reached.

12.
PLoS Pathog ; 16(7): e1008656, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32639985

RESUMEN

Influenza A virus (IAV) binds its host cell using the major viral surface protein hemagglutinin (HA). HA recognizes sialic acid, a plasma membrane glycan that functions as the specific primary attachment factor (AF). Since sialic acid alone cannot fulfill a signaling function, the virus needs to activate downstream factors to trigger endocytic uptake. Recently, the epidermal growth factor receptor (EGFR), a member of the receptor-tyrosine kinase family, was shown to be activated by IAV and transmit cell entry signals. However, how IAV's binding to sialic acid leads to engagement and activation of EGFR remains largely unclear. We used multicolor super-resolution microscopy to study the lateral organization of both IAV's AFs and its functional receptor EGFR at the scale of the IAV particle. Intriguingly, quantitative cluster analysis revealed that AFs and EGFR are organized in partially overlapping submicrometer clusters in the plasma membrane of A549 cells. Within AF domains, the local AF concentration reaches on average 10-fold the background concentration and tends to increase towards the cluster center, thereby representing a multivalent virus-binding platform. Using our experimentally measured cluster characteristics, we simulated virus diffusion on a flat membrane. The results predict that the local AF concentration strongly influences the distinct mobility pattern of IAVs, in a manner consistent with live-cell single-virus tracking data. In contrast to AFs, EGFR resides in smaller clusters. Virus binding activates EGFR, but interestingly, this process occurs without a major lateral EGFR redistribution, indicating the activation of pre-formed clusters, which we show are long-lived. Taken together, our results provide a quantitative understanding of the initial steps of influenza virus infection. Co-clustering of AF and EGFR permit a cooperative effect of binding and signaling at specific platforms, thus linking their spatial organization to their functional role during virus-cell binding and receptor activation.


Asunto(s)
Virus de la Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Células A549 , Receptores ErbB/metabolismo , Humanos , Virus de la Influenza A/patogenicidad , Gripe Humana/metabolismo , Internalización del Virus
13.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971430

RESUMEN

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Asunto(s)
Antagonistas de Leucotrieno/farmacología , Leucotrienos , Nanopartículas/química , Animales , Femenino , Voluntarios Sanos , Humanos , Leucotrienos/biosíntesis , Leucotrienos/metabolismo , Masculino , Ratones
14.
Proc Natl Acad Sci U S A ; 116(47): 23671-23681, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31690657

RESUMEN

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico/inmunología , Activación de Linfocitos , Células T Asesinas Naturales/inmunología , Animales , Presentación de Antígeno , Antígenos CD1d/biosíntesis , Antígenos CD1d/inmunología , Autoantígenos/inmunología , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Citoesqueleto/ultraestructura , Endosomas/inmunología , Glicoesfingolípidos/inmunología , Glicoesfingolípidos/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Lípidos/inmunología , Lisosomas/inmunología , Ratones , Ratones Endogámicos C57BL , Células THP-1 , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/inmunología , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/fisiología
15.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142694

RESUMEN

Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab-peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab-Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody-membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein-membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.


Asunto(s)
VIH-1 , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH/química , VIH-1/metabolismo , Péptidos , Fosfolípidos
16.
Angew Chem Int Ed Engl ; 61(17): e202117499, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35107199

RESUMEN

The high natural abundance of aluminium makes the respective fluorophores attractive for various optical applications, but photoluminescence quantum yields above 0.7 have yet not been reported for solutions of aluminium complexes. In this contribution, a dinuclear aluminium(III) complex featuring enhanced photoluminescence properties is described. Its facile one-pot synthesis originates from a readily available precursor and trimethyl aluminium. In solution, the complex exhibits an unprecedented photoluminescence quantum yield near unity (Φabsolute 1.0±0.1) and an excited-state lifetime of 2.3 ns. In the solid state, J-aggregation and aggregation-caused quenching are noted, but still quantum yields of 0.6 are observed. Embedding the complex in electrospun non-woven fabrics yields a highly fluorescent fleece possessing a quantum yield of 0.9±0.04.

17.
J Biol Chem ; 295(15): 5036-5050, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32034091

RESUMEN

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.


Asunto(s)
Citoesqueleto de Actina/fisiología , Endotelio Linfático/metabolismo , Endotelio Vascular/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Cultivadas , Endotelio Linfático/citología , Endotelio Vascular/citología , Humanos , Receptores de Hialuranos/genética , Proteínas de Transporte Vesicular/genética
18.
Chembiochem ; 22(4): 686-693, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049107

RESUMEN

Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.


Asunto(s)
Membrana Celular/ultraestructura , Núcleo Celular/ultraestructura , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Peroxisomas/ultraestructura , Células HEK293 , Humanos
19.
Biophys J ; 118(10): 2448-2457, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32359408

RESUMEN

Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ∼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively.


Asunto(s)
Microscopía Fluorescente , Membrana Celular , Difusión , Espectrometría de Fluorescencia
20.
J Biol Chem ; 294(34): 12599-12609, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31270209

RESUMEN

Cholesterol constitutes ∼30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane.


Asunto(s)
Membrana Celular/química , Colesterol/análisis , Simulación de Dinámica Molecular , Nanotecnología , Animales , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , Cricetulus , Difusión , Femenino , Masculino , Método de Montecarlo , Espectrometría de Fluorescencia , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA