Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858625

RESUMEN

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Asunto(s)
Rotura Cromosómica , Segregación Cromosómica , Aneuploidia , Animales , ADN , Replicación del ADN , Desarrollo Embrionario/genética , Humanos , Mamíferos/genética
2.
Cell ; 184(6): 1561-1574, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33740453

RESUMEN

Our genome at conception determines much of our health as an adult. Most human diseases have a heritable component and thus may be preventable through heritable genome editing. Preventing disease from the beginning of life before irreversible damage has occurred is an admirable goal, but the path to fruition remains unclear. Here, we review the significant scientific contributions to the field of human heritable genome editing, the unique ethical challenges that cannot be overlooked, and the hurdles that must be overcome prior to translating these technologies into clinical practice.


Asunto(s)
Investigación Biomédica , Edición Génica/ética , Genoma Humano , Patrón de Herencia/genética , Pautas de la Práctica en Medicina , Roturas del ADN , Humanos
3.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125898

RESUMEN

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas Humanos/genética , Embrión de Mamíferos/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Línea Celular , Deleción Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Implantación del Embrión/genética , Proteínas del Ojo/genética , Fertilización , Edición Génica , Reordenamiento Génico/genética , Sitios Genéticos , Genoma Humano , Genotipo , Heterocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mutación INDEL/genética , Ratones , Mitosis , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética
4.
J Immunol ; 213(1): 40-51, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809096

RESUMEN

NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.


Asunto(s)
Apoptosis , Células Asesinas Naturales , Activación de Linfocitos , Humanos , Células Asesinas Naturales/inmunología , Apoptosis/inmunología , Activación de Linfocitos/inmunología , Daño del ADN , Replicación del ADN , Antígeno CD56/metabolismo , Estrés Fisiológico/inmunología , Linfocitos T/inmunología , Células Cultivadas
5.
Hum Mol Genet ; 31(17): 2899-2917, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394024

RESUMEN

Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.


Asunto(s)
Momento de Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Replicación del ADN/genética , Momento de Replicación del ADN/genética , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Origen de Réplica
6.
Genome Res ; 31(12): 2155-2169, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34810218

RESUMEN

Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.

7.
Nature ; 532(7597): 107-11, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26982723

RESUMEN

Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.


Asunto(s)
Diferenciación Celular , Estudios de Asociación Genética/métodos , Haploidia , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Autorrenovación de las Células , Separación Celular , Tamaño de la Célula , Cromosomas Humanos X/genética , Diploidia , Regulación hacia Abajo/genética , Eliminación de Gen , Estratos Germinativos/citología , Humanos , Cariotipificación , Oocitos/metabolismo , Fosforilación Oxidativa , Partenogénesis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Inactivación del Cromosoma X/genética
8.
Nucleic Acids Res ; 48(15): e88, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710620

RESUMEN

DNA synthesis is a fundamental requirement for cell proliferation and DNA repair, but no single method can identify the location, direction and speed of replication forks with high resolution. Mammalian cells have the ability to incorporate thymidine analogs along with the natural A, T, G and C bases during DNA synthesis, which allows for labeling of replicating or repaired DNA. Here, we demonstrate the use of the Oxford Nanopore Technologies MinION to detect 11 different thymidine analogs including CldU, BrdU, IdU as well as EdU alone or coupled to Biotin and other bulky adducts in synthetic DNA templates. We also show that the large adduct Biotin can be distinguished from the smaller analog IdU, which opens the possibility of using analog combinations to identify the location and direction of DNA synthesis. Furthermore, we detect IdU label on single DNA molecules in the genome of mouse pluripotent stem cells and using CRISPR/Cas9-mediated enrichment, determine replication rates using newly synthesized DNA strands in human mitochondrial DNA. We conclude that this novel method, termed Replipore sequencing, has the potential for on target examination of DNA replication in a wide range of biological contexts.


Asunto(s)
Bromodesoxiuridina/química , Secuenciación de Nanoporos , Timidina/genética , Animales , Biotina/química , Biotina/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Nanoporos , Timidina/química
10.
Nat Rev Mol Cell Biol ; 9(7): 505-16, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18568039

RESUMEN

It is thought that most cell types of the human body share the same genetic information as that contained in the zygote from which they originate. Consistent with this view, animal cloning studies demonstrated that the intact genome of a differentiated cell can be reprogrammed to support the development of an entire organism and allow the production of pluripotent stem cells. Recent progress in reprogramming research now points to an important role for transcription factors in the establishment and the maintenance of cellular phenotypes, and to cell division as a mediator of transitions between different states of gene expression.


Asunto(s)
Clonación de Organismos , Regulación de la Expresión Génica , Mitosis/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , Clonación de Organismos/métodos , Epigénesis Genética , Humanos , Técnicas de Transferencia Nuclear , Células Madre Pluripotentes/citología , Transcripción Genética
11.
J Immunol ; 201(6): 1662-1670, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30082321

RESUMEN

Type 1 diabetes (T1D) is most likely caused by killing of ß cells by autoreactive CD8+ T cells. Methods to isolate and identify these cells are limited by their low frequency in the peripheral blood. We analyzed CD8+ T cells, reactive with diabetes Ags, with T cell libraries and further characterized their phenotype by CyTOF using class I MHC tetramers. In the libraries, the frequency of islet Ag-specific CD45RO+IFN-γ+CD8+ T cells was higher in patients with T1D compared with healthy control subjects. Ag-specific cells from the libraries of patients with T1D were reactive with ZnT8186-194, whereas those from healthy control recognized ZnT8186-194 and other Ags. ZnT8186-194-reactive CD8+ cells expressed an activation phenotype in T1D patients. We found TCR sequences that were used in multiple library wells from patients with T1D, but these sequences were private and not shared between individuals. These sequences could identify the Ag-specific T cells on a repeated draw, ex vivo in the IFN-γ+ CD8+ T cell subset. We conclude that CD8+ T cell libraries can identify Ag-specific T cells in patients with T1D. The T cell clonotypes can be tracked in vivo with identification of the TCR gene sequences.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Células Secretoras de Insulina/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T CD8-positivos/patología , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Células Secretoras de Insulina/patología , Masculino
12.
Nature ; 510(7506): 533-6, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24776804

RESUMEN

The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.


Asunto(s)
Núcleo Celular/genética , Reprogramación Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diploidia , Oocitos/citología , Células Madre Pluripotentes/citología , Adulto , Blastocisto/efectos de los fármacos , Fusión Celular , Cromosomas de los Mamíferos/metabolismo , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Recién Nacido , Metafase , Oocitos/metabolismo , Oogénesis , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Virus Sendai , Huso Acromático/metabolismo
13.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230814

RESUMEN

Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Técnicas de Transferencia Nuclear , Animales , Diferenciación Celular , Reprogramación Celular , Clonación de Organismos/métodos , Embrión de Mamíferos/citología , Desarrollo Embrionario , Epigenómica , Enucleación del Ojo , Humanos , Oocitos/citología
14.
BMC Genomics ; 20(Suppl 1): 78, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712508

RESUMEN

BACKGROUND: Recent advances in single-molecule sequencing techniques, such as Nanopore sequencing, improved read length, increased sequencing throughput, and enabled direct detection of DNA modifications through the analysis of raw signals. These DNA modifications include naturally occurring modifications such as DNA methylations, as well as modifications that are introduced by DNA damage or through synthetic modifications to one of the four standard nucleotides. METHODS: To improve the performance of detecting DNA modifications, especially synthetically introduced modifications, we developed a novel computational tool called NanoMod. NanoMod takes raw signal data on a pair of DNA samples with and without modified bases, extracts signal intensities, performs base error correction based on a reference sequence, and then identifies bases with modifications by comparing the distribution of raw signals between two samples, while taking into account of the effects of neighboring bases on modified bases ("neighborhood effects"). RESULTS: We evaluated NanoMod on simulation data sets, based on different types of modifications and different magnitudes of neighborhood effects, and found that NanoMod outperformed other methods in identifying known modified bases. Additionally, we demonstrated superior performance of NanoMod on an E. coli data set with 5mC (5-methylcytosine) modifications. CONCLUSIONS: In summary, NanoMod is a flexible tool to detect DNA modifications with single-base resolution from raw signals in Nanopore sequencing, and will facilitate large-scale functional genomics experiments that use modified nucleotides.


Asunto(s)
Biología Computacional/métodos , ADN , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Simulación por Computador , ADN/química , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Nanoporos , Reproducibilidad de los Resultados , Flujo de Trabajo
15.
EMBO J ; 34(7): 841-55, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25733347

RESUMEN

The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes.


Asunto(s)
Reprogramación Celular/inmunología , Terapia de Inmunosupresión , Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos/inmunología , Inmunología del Trasplante , Animales , Autoinjertos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/trasplante , Trasplante de Riñón
17.
Nature ; 493(7434): 632-7, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23254936

RESUMEN

Mitochondrial DNA mutations transmitted maternally within the oocyte cytoplasm often cause life-threatening disorders. Here we explore the use of nuclear genome transfer between unfertilized oocytes of two donors to prevent the transmission of mitochondrial mutations. Nuclear genome transfer did not reduce developmental efficiency to the blastocyst stage, and genome integrity was maintained provided that spontaneous oocyte activation was avoided through the transfer of incompletely assembled spindle-chromosome complexes. Mitochondrial DNA transferred with the nuclear genome was initially detected at levels below 1%, decreasing in blastocysts and stem-cell lines to undetectable levels, and remained undetectable after passaging for more than one year, clonal expansion, differentiation into neurons, cardiomyocytes or ß-cells, and after cellular reprogramming. Stem cells and differentiated cells had mitochondrial respiratory chain enzyme activities and oxygen consumption rates indistinguishable from controls. These results demonstrate the potential of nuclear genome transfer to prevent the transmission of mitochondrial disorders in humans.


Asunto(s)
ADN Mitocondrial/genética , Técnicas de Transferencia Nuclear/normas , Oocitos , Línea Celular , Células Cultivadas , Criopreservación , Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genotipo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Oocitos/citología , Oocitos/metabolismo
18.
Nature ; 478(7367): 70-5, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979046

RESUMEN

The exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cells affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes after genome exchange arrests at late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, the resultant triploid cells develop to the blastocyst stage. Stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies removal of the oocyte genome as the primary cause of developmental failure after genome exchange.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Oocitos/citología , Oocitos/fisiología , Adulto , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Metilación de ADN , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma Humano/genética , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Humanos , Donación de Oocito , Oocitos/crecimiento & desarrollo , Cultivo Primario de Células , Transcripción Genética , Triploidía , Adulto Joven
19.
Hum Mol Genet ; 23(13): 3445-55, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24497574

RESUMEN

While the past decade has seen great progress in mapping loci for common diseases, studying how these risk alleles lead to pathology remains a challenge. Age-related macular degeneration (AMD) affects 9 million older Americans, and is characterized by the loss of the retinal pigment epithelium (RPE). Although the closely linked genome-wide association studies ARMS2/HTRA1 genes, located at the chromosome 10q26 locus, are strongly associated with the risk of AMD, their downstream targets are unknown. Low population frequencies of risk alleles in tissue banks make it impractical to study their function in cells derived from autopsied tissue. Moreover, autopsy eyes from end-stage AMD patients, where age-related RPE atrophy and fibrosis are already present, cannot be used to determine how abnormal ARMS2/HTRA1 expression can initiate RPE pathology. Instead, induced pluripotent stem (iPS) cell-derived RPE from patients provides us with earlier stage AMD patient-specific cells and allows us to analyze the underlying mechanisms at this critical time point. An unbiased proteome screen of A2E-aged patient-specific iPS-derived RPE cell lines identified superoxide dismutase 2 (SOD2)-mediated antioxidative defense in the genetic allele's susceptibility of AMD. The AMD-associated risk haplotype (T-in/del-A) impairs the ability of the RPE to defend against aging-related oxidative stress. SOD2 defense is impaired in RPE homozygous for the risk haplotype (T-in/del-A; T-in/del-A), while the effect was less pronounced in RPE homozygous for the protective haplotype (G-Wt-G; G-Wt-G). ARMS2/HTRA1 risk alleles decrease SOD2 defense, making RPE more susceptible to oxidative damage and thereby contributing to AMD pathogenesis.


Asunto(s)
Alelos , Estudio de Asociación del Genoma Completo/métodos , Línea Celular , Predisposición Genética a la Enfermedad/genética , Genotipo , Haplotipos/genética , Humanos
20.
Hum Reprod ; 31(5): 1058-65, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26936885

RESUMEN

STUDY QUESTION: Among women who carry pathogenic mitochondrial DNA (mtDNA) point mutations and healthy oocyte donors, what are the levels of support for developing oocyte mitochondrial replacement therapy (OMRT) to prevent transmission of mtDNA mutations? SUMMARY ANSWER: The majority of mtDNA carriers and oocyte donors support the development of OMRT techniques to prevent transmission of mtDNA diseases. WHAT IS KNOWN ALREADY: Point mutations of mtDNA cause a variety of maternally inherited human diseases that are frequently disabling and often fatal. Recent developments in (OMRT) as well as pronuclear transfer between embryos offer new potential options to prevent transmission of mtDNA disease. However, it is unclear whether the non-scientific community will approve of embryos that contain DNA from three people. STUDY DESIGN, SIZE, DURATION: Between 1 June 2012 through 12 February 2015, we administered surveys in cross-sectional studies of 92 female carriers of mtDNA point mutations and 112 healthy oocyte donors. PARTICIPANTS/MATERIALS, SETTING, METHODS: The OMRT carrier survey was completed by 92 female carriers of an mtDNA point mutation. Carriers were recruited through the North American Mitochondrial Disease Consortium (NAMDC), the United Mitochondrial Disease Foundation (UMDF), patient support groups, research and private patients followed at the Columbia University Medical Center (CUMC) and patients' referrals of maternal relatives. The OMRT donor survey was completed by 112 women who had donated oocytes through a major ITALIC! in vitro fertilization clinic. MAIN RESULTS AND THE ROLE OF CHANCE: All carriers surveyed were aware that they could transmit the mutation to their offspring, with 78% (35/45) of women, who were of childbearing age, indicating that the risk was sufficient to consider not having children, and 95% (87/92) of all carriers designating that the development of this technique was important and worthwhile. Of the 21 surveyed female carriers considering childbearing, 20 (95%) considered having their own biological offspring somewhat or very important and 16 of the 21 respondents (76%) were willing to donate oocytes for research and development. Of 112 healthy oocyte donors who completed the OMRT donor survey, 97 (87%) indicated that they would donate oocytes for generating a viable embryo through OMRT. LIMITATIONS, REASONS FOR CAUTION: Many of the participants were either patients or relatives of patients who were already enrolled in a research-oriented database, or who sought care in a tertiary research university setting, indicating a potential sampling bias. The survey was administered to a select group of individuals, who carry, or are at risk for carrying, mtDNA point mutations. These individuals are more likely to have been affected by the mutation or have witnessed first-hand the devastating effects of these mutations. It has not been established whether the general public would be supportive of this work. This survey did not explicitly address alternatives to OMRT. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study indicating a high level of interest in the development of these methods among women affected by the diseases or who are at risk of carrying mtDNA mutations as well as willingness of most donors to provide oocytes for the development of OMRT. STUDY FUNDING/COMPETING INTERESTS: This work was conducted under the auspices of the NAMDC (Study Protocol 7404). NAMDC (U54NS078059) is part of the NCATS Rare Diseases Clinical Research Network (RDCRN). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR) and NCATS. NAMDC is funded through a collaboration between NCATS, NINDS, NICHD and NIH Office of Dietary Supplements. The work was also supported by the Bernard and Anne Spitzer Fund and the New York Stem Cell Foundation (NYSCF). Dr Hirano has received research support from Santhera Pharmaceuticals and Edison Pharmaceuticals for studies unrelated to this work. None of the other authors have conflicts of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Asunto(s)
Actitud , Heterocigoto , Enfermedades Mitocondriales/prevención & control , Terapia de Reemplazo Mitocondrial/psicología , Adulto , Estudios Transversales , ADN Mitocondrial/química , Femenino , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/psicología , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA