Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1627-1738, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873596

RESUMEN

The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.


Asunto(s)
Angiotensina II/metabolismo , Receptores de Angiotensina/metabolismo , Transducción de Señal , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Cardiopatías/metabolismo , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo
2.
Am J Pathol ; 193(5): 638-653, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37080662

RESUMEN

Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.


Asunto(s)
Músculo Liso Vascular , Enfermedades Vasculares , Animales , Ratones , Arterias Carótidas/metabolismo , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , ARN Mensajero/metabolismo , Enfermedades Vasculares/patología
3.
Physiol Rev ; 96(3): 1025-1069, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33003261

RESUMEN

The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.

4.
Circ Res ; 128(7): 969-992, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793333

RESUMEN

Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hipertensión/fisiopatología , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Envejecimiento/fisiología , Envejecimiento Prematuro/fisiopatología , Animales , Muerte Celular , Supervivencia Celular , Senescencia Celular , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Hipertensión/etiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Estrés Mecánico , Respuesta de Proteína Desplegada
5.
Am J Physiol Cell Physiol ; 322(1): C73-C85, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817269

RESUMEN

In this study, we have looked for an optimum media glucose concentration and compared glucose consumption in three vascular cell types, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs) with or without angiotensin II (AngII) stimulation. In a subconfluent 6-well experiment in 1 mL DMEM with a standard low (100 mg/dL), a standard high (450 mg/dL), or a mixed middle (275 mg/dL) glucose concentration, steady and significant glucose consumption was observed in all cell types. After 48-h incubation, media that contained low glucose was reduced to almost 0 mg/dL, media that contained high glucose remained significantly higher at ∼275 mg/dL, and media that contained middle glucose remained closer to physiological range. AngII treatment enhanced glucose consumption in AFs and VSMCs but not in ECs. Enhanced extracellular acidification rate by AngII was also observed in AFs. In AFs, AngII induction of target proteins at 48 h varied depending on the glucose concentration used. In low glucose media, induction of glucose regulatory protein 78 or hexokinase II was highest, whereas induction of VCAM-1 was lowest. Utilization of specific inhibitors further suggests essential roles of angiotensin II type-1 receptor and glycolysis in AngII-induced fibroblast activation. Overall, this study demonstrates a high risk of hypo- or hyperglycemic conditions when standard low or high glucose media is used with vascular cells. Moreover, these conditions may significantly alter experimental outcomes. Media glucose concentration should be monitored during any culture experiments and utilization of middle glucose media is recommended for all vascular cell types.


Asunto(s)
Células Endoteliales/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Humanos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
6.
Hepatol Res ; 52(12): 1020-1033, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36001355

RESUMEN

AIM: The mitochondria are highly plastic and dynamic organelles; mitochondrial dysfunction has been reported to play causative roles in diabetes, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). However, the relationship between mitochondrial fission and NAFLD pathogenesis remains unknown. We aimed to investigate whether alterations in mitochondrial fission could play a role in the progression of NAFLD. METHODS: Mice were fed a standard diet or choline-deficient, L-amino acid-defined (CDAA) diet with vehicle or mitochondrial division inhibitor-1. RESULTS: Substantial enhancement of mitochondrial fission in hepatocytes was triggered by 4 weeks of feeding and was associated with changes reflecting the early stage of human nonalcoholic steatohepatitis (NASH), steatotic change with liver inflammation, and hepatocyte ballooning. Excessive mitochondrial fission inhibition in hepatocytes and lipid metabolism dysregulation in adipose tissue attenuated liver inflammation and fibrogenesis but not steatosis and the systemic pathological changes in the early and chronic fibrotic NASH stages (4- and 12-week CDAA feeding). These beneficial changes due to the suppression of mitochondrial fission against the liver and systemic injuries were associated with decreased autophagic responses and endoplasmic reticulum stress in hepatocytes. Injuries to other liver cells, such as endothelial cells, Kupffer cells, and hepatic stellate cells, were also attenuated by the inhibition of mitochondrial fission in hepatocytes. CONCLUSIONS: Taken together, these findings suggest that excessive mitochondrial fission in hepatocytes could play a causative role in NAFLD progression by liver inflammation and fibrogenesis through altered cell cross-talk. This study provides a potential therapeutic target for NAFLD.

7.
Cell Mol Life Sci ; 78(9): 4161-4187, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33575814

RESUMEN

A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.


Asunto(s)
Proteínas ADAM/metabolismo , Proteína ADAM17/metabolismo , Enfermedades Cardiovasculares/patología , Angiotensina II/metabolismo , Animales , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Enfermedades Cardiovasculares/metabolismo , Citocinas/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Transducción de Señal
8.
Stroke ; 52(8): 2661-2670, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34157864

RESUMEN

Background and Purpose: The incidences of intracranial aneurysm and aneurysmal subarachnoid hemorrhage are high in postmenopausal women. Although population-based studies suggest that hormone replacement therapy is beneficial for postmenopausal women with intracranial aneurysms, estrogen replacement may no longer be recommended for the prevention of chronic diseases given its association with adverse outcomes, such as cancer and ischemic stroke. The isoflavone daidzein and its intestinal metabolite equol are bioactive phytoestrogens and potent agonists of estrogen receptors. Given their estrogenic properties, we investigated whether the isoflavones daidzein and equol are protective against the formation and rupture of intracranial aneurysms in a mouse model of the postmenopausal state. Methods: We induced intracranial aneurysms in ovariectomized adult female mice using a combination of induced systemic hypertension and a single injection of elastase into the cerebrospinal fluid. We fed the mice with an isoflavone-free diet with/without daidzein supplementation, or in a combination of intraperitoneal equol, or oral vancomycin treatment. We also used estrogen receptor beta knockout mice. Results: Both dietary daidzein and supplementation with its metabolite, equol, were protective against aneurysm formation in ovariectomized mice. The protective effects of daidzein and equol required estrogen receptor-ß. The disruption of the intestinal microbial conversion of daidzein to equol abolished daidzein's protective effect against aneurysm formation. Mice treated with equol had lower inflammatory cytokines in the cerebral arteries, suggesting that phytoestrogens modulate inflammatory processes important to intracranial aneurysm pathogenesis. Conclusions: Our study establishes that both dietary daidzein and its metabolite, equol, protect against aneurysm formation in ovariectomized female mice through the activation of estrogen receptor-ß and subsequent suppression of inflammation. Dietary daidzein's protective effect required the intestinal conversion to equol. Our results indicate the potential therapeutic value of dietary daidzein and its metabolite, equol, for the prevention of the formation of intracranial aneurysms and related subarachnoid hemorrhage.


Asunto(s)
Equol/uso terapéutico , Aneurisma Intracraneal/prevención & control , Aneurisma Intracraneal/fisiopatología , Isoflavonas/uso terapéutico , Fitoestrógenos/uso terapéutico , Animales , Equol/farmacología , Femenino , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/sangre , Isoflavonas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovariectomía/efectos adversos , Fitoestrógenos/farmacología
9.
Clin Sci (Lond) ; 135(13): 1627-1630, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34240733

RESUMEN

This commentary highlights the study entitled 'Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor' presented by Fu et al. published in Clinical Science (Clin Sci (Lond) (2021) 135(6), https://doi.org/10.1042/CS20201047). The authors evaluated the role of the soluble (pro)renin receptor (sPRR), a cleavage product of the prorenin receptor (PRR) by the site 1 protease, as a ligand for angiotensin II type 1 receptor (AT1R). They presented for the first time that sPRR directly interacts with AT1R, causing nuclear factor-κB activation, inflammation, apoptosis, and endothelial dysfunction in primary human umbilical vein endothelial cells (HUVECs). Furthermore, the interaction between sPRR and AT1R was responsible for endothelial dysfunction and hypertension in diet-induced obesity mice. These results provide a potential mechanism for obesity-induced endothelial dysfunction and hypertension. Thus, the sPRR/AT1R complex may be a novel therapeutic target for cardiovascular diseases associated with endothelial dysfunction.


Asunto(s)
Receptor de Angiotensina Tipo 1 , Renina , Animales , Células Endoteliales/metabolismo , Ligandos , Ratones , Renina/metabolismo , Sistema Renina-Angiotensina
10.
Clin Sci (Lond) ; 135(21): 2503-2520, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34751393

RESUMEN

Sarcopenia is defined as the progressive and generalized loss of skeletal muscle mass and strength, which is associated with increased likelihood of adverse outcomes including falls, fractures, physical disability, and mortality. The etiology of sarcopenia has been postulated to be multifactorial with genetics, aging, immobility, nutritional deficiencies, inflammation, stress, and endocrine factors all contributing to the imbalance of muscle anabolism and catabolism. The prevalence of sarcopenia is estimated to range from 13 to 24% in adults over 60 years of age and up to 50% in persons aged 80 and older. As the population continues to age, the prevalence of sarcopenia continues to increase and is expected to affect 500 million people by the year 2050. Sarcopenia impacts the overall health of patients through limitations in functional status, increase in hospital readmissions, poorer hospital outcomes, and increase in overall mortality. Thus, there exists a need to prevent or reduce the occurrence of sarcopenia. Here, we explore the potential mechanisms and current studies regarding angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors on reducing the development of sarcopenia through the associated changes in cardiovascular function, renal function, muscle fiber composition, inflammation, endothelial dysfunction, metabolic efficiency, and mitochondrial function.


Asunto(s)
Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Sarcopenia/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Animales , Composición Corporal , Comorbilidad , Femenino , Estado Funcional , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Factores de Riesgo , Sarcopenia/epidemiología , Sarcopenia/metabolismo , Sarcopenia/fisiopatología , Resultado del Tratamiento
11.
J Cardiovasc Pharmacol ; 77(1): 43-48, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079831

RESUMEN

ABSTRACT: Disruption of protein quality control occurs with aging and cardiovascular pathologies including arterial stiffness and hypertension. Angiotensin II (Ang II) is believed to induce endoplasmic reticulum stress in vascular smooth muscle cells (VSMCs), thus contributing to vascular remodeling and dysfunction. However, whether Ang II increases formation of protein aggregates and mediates proteotoxicity in VSMCs remain obscure. Accordingly, this study aimed to establish a quantitative method of protein aggregate detection induced by Ang II and to investigate their potential involvement in inflammatory and senescence responses. Proteostat staining showed increased aggregate numbers per cell on Ang II exposure. Immunoblot analysis further showed an increase in preamyloid oligomer presence in a detergent insoluble protein fraction purified from VSMCs stimulated with Ang II. Moreover, these responses were attenuated by treatment with chemical chaperone, 4-phenylbutyrate. 4-phenylbutyrate further blocked Ang II-induced senescence associated ß-galactosidase activity and THP-1 monocyte adhesion in VSMCs. These data suggest that Ang II induces proteotoxicity in VSMCs which likely contributes to aging and inflammation in the vasculature.


Asunto(s)
Angiotensina II/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Agregado de Proteínas , Animales , Adhesión Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Agregación Patológica de Proteínas , Ratas Sprague-Dawley , Células THP-1
12.
Am J Physiol Heart Circ Physiol ; 318(5): H1162-H1175, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216616

RESUMEN

Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including ß-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD.NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.


Asunto(s)
Envejecimiento/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Cardiopatías/etiología , Corazón/fisiología , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Envejecimiento/metabolismo , Animales , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Cardiopatías/metabolismo , Homeostasis , Masculino , Ratones , Mutación
13.
Clin Sci (Lond) ; 134(1): 33-37, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31898748

RESUMEN

Chronic inflammation of the arterial wall has been implicated in the development of abdominal aortic aneurysm (AAA). However, the detailed molecular mechanism(s) by which inflammatory cells contributes to AAA pathogenesis remains largely unclear. In their article in Clinical Science, Krishna et al. have reported that depletion of CD11c+ dendritic cells inhibited experimental AAA formation in mice. The authors also demonstrated a decrease in CD4 and CD8 positive T cells in the circulation, lower plasma neutrophil elastase activity, and aortic matrix remodeling. These novel findings will help clarify the underlying mechanisms of AAA progression and may provide a new target for future therapeutic research in AAA formation.


Asunto(s)
Aneurisma de la Aorta Abdominal , Angiotensina II , Animales , Células Dendríticas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
FASEB J ; 33(11): 11993-12007, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393790

RESUMEN

High-fat diet (HFD)-induced obesity is associated with accumulation of inflammatory cells predominantly in visceral adipose depots [visceral adipose tissue (VAT)] rather than in subcutaneous ones [subcutaneous adipose tissue (SAT)]. The cellular and molecular mechanisms responsible for this phenotypic difference remain poorly understood. Controversy also exists on the overall impact that adipose tissue inflammation has on metabolic health in diet-induced obesity. The endothelium of the microcirculation regulates both the transport of lipids and the trafficking of leukocytes into organ tissue. We hypothesized that the VAT and SAT microcirculations respond differently to postprandial processing of dietary fat. We also tested whether inhibition of endothelial postprandial responses to high-fat meals (HFMs) preserves metabolic health in chronic obesity. We demonstrate that administration of a single HFM or ad libitum access to a HFD for 24 h quickly induces a transient P-selectin-dependent inflammatory phenotype in the VAT but not the SAT microcirculation of lean wild-type mice. Studies in P-selectin-deficient mice confirmed a mechanistic role for P-selectin in the initiation of leukocyte trafficking, myeloperoxidase accumulation, and acute reduction in adiponectin mRNA expression by HFMs. Despite reduced VAT inflammation in response to HFMs, P-selectin-deficient mice still developed glucose intolerance and insulin resistance when chronically fed an HFD. Our data uncover a novel nutrient-sensing role of the vascular endothelium that instigates postprandial VAT inflammation. They also demonstrate that inhibition of this transient postprandial inflammatory response fails to correct metabolic dysfunction in diet-induced obesity.-Preston, K. J., Rom, I., Vrakas, C., Landesberg, G., Etwebe, Z., Muraoka, S., Autieri, M., Eguchi, S., Scalia, R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation.


Asunto(s)
Endotelio/metabolismo , Ácidos Grasos/metabolismo , Grasa Intraabdominal/metabolismo , Leucocitos/metabolismo , Microcirculación , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Grasa Intraabdominal/irrigación sanguínea , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Selectina-P/genética , Selectina-P/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Periodo Posprandial , Grasa Subcutánea/metabolismo
15.
J Cardiovasc Pharmacol ; 75(6): 603-607, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32168154

RESUMEN

Adenoviral vectors are useful tools in manipulating a gene of interest in vitro and in vivo, including in the vascular system. The transduction efficiencies of adenoviral vectors in vascular cells such as endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are known to be lower than those in epithelial cell types. The effective entry for adenoviral vectors is primarily mediated through the coxsackievirus and adenovirus receptor (CAR), which has been shown to be expressed in both cell types. Cationic liposomes have been used to enhance adenovirus transduction efficiency in nonepithelial cells. Accordingly, the aim of this study is to obtain new information regarding differences in transduction efficiencies, cationic liposome sensitivity, and CAR expression between ECs and VSMCs. Using cultured rat aortic ECs and VSMCs, here, we have compared transduction efficiency of adenoviruses with or without inclusion of liposomes and CAR expression. A significant increase in basal transduction efficiency was observed in ECs compared with VSMCs. Cationic liposome polybrene enhanced transduction efficiency in VSMCs, whereas decreased efficiency was observed in ECs. Western blotting demonstrated expression of the CAR in ECs but not in VSMCs. Proteomic analysis and mouse aorta immunostaining further suggests significant expression of the CAR in ECs but not in VSMCs. In conclusion, adenoviruses can effectively transduce the gene of interest in aortic ECs likely because of abundant expression of the CAR, whereas cationic liposomes such as polybrene enhance the transduction efficiency in VSMCs lacking CAR expression.


Asunto(s)
Adenoviridae/genética , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Células Endoteliales/metabolismo , Vectores Genéticos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción Genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Animales , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Bromuro de Hexadimetrina/química , Liposomas , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo
16.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679678

RESUMEN

Investigations of vascular smooth muscle cell (VSMC) phenotypic modulation due to angiotensin II (AngII) stimulation are important for understanding molecular mechanisms contributing to hypertension and associated vascular pathology. AngII induces endoplasmic reticulum (ER) stress in VSMCs, which has been implicated in hypertensive vascular remodeling. Under ER stress, 78 kDa glucose-regulated protein (GRP78) acts as an endogenous chaperone, as well as a master controller of unfolded protein response (UPR) to maintain protein quality control. However, the potential downstream consequences of ER stress induced by AngII on protein quality control and pro-inflammatory phenotype in VSMCs remain elusive. This study aims to identify protein aggregation as evidence of the disruption of protein quality control in VSMCs, and to test the hypothesis that preservation of proteostasis by overexpression of GRP78 can attenuate the AngII-induced pro-inflammatory phenotype in VSMCs. Increases in protein aggregation and enhanced UPR were observed in VSMCs exposed to AngII, which were mitigated by overexpression of GRP78. Moreover, GRP78 overexpression attenuated enhanced monocyte adhesion to VSMCs induced by AngII. Our results thus indicate that the prevention of protein aggregation can potentially mitigate an inflammatory phenotype in VSMCs, which may suggest an alternative therapy for the treatment of AngII-associated vascular disorders.


Asunto(s)
Angiotensina II/metabolismo , Adhesión Celular , Proteínas de Choque Térmico/metabolismo , Monocitos/citología , Músculo Liso Vascular/citología , Animales , Línea Celular , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Monocitos/metabolismo , Músculo Liso Vascular/metabolismo , Agregado de Proteínas , Proteostasis , Ratas Sprague-Dawley , Regulación hacia Arriba , Remodelación Vascular
17.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916794

RESUMEN

Cardiovascular disease (CVD) is a prevalent issue in the global aging population. Premature vascular aging such as elevated arterial stiffness appears to be a major risk factor for CVD. Vascular smooth muscle cells (VSMCs) are one of the essential parts of arterial pathology and prone to stress-induced senescence. The pervasiveness of senescent VSMCs in the vasculature increases with age and can be further expedited by various stressing events such as oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, and chronic inflammation. Angiotensin II (AngII) can induce many of these responses in VSMCs and is thus considered a key regulator of VSMC senescence associated with CVD. Understanding the precise mechanisms and consequences of senescent cell accumulation may uncover a new generation of therapies including senolytic and senomorphic compounds against CVD. Accordingly, in this review article, we discuss potential molecular mechanisms of VSMC senescence such as those induced by AngII and the therapeutic manipulations of senescence to control age-related CVD and associated conditions such as by senolytic.


Asunto(s)
Envejecimiento/fisiología , Angiotensina II/fisiología , Enfermedades Cardiovasculares/prevención & control , Terapia Molecular Dirigida , Miocitos del Músculo Liso/fisiología , Animales , Senescencia Celular , Humanos , Sistema Renina-Angiotensina
18.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354103

RESUMEN

Angiotensin II (AngII) has a crucial role in cardiovascular pathologies, including endothelial inflammation and premature vascular aging. However, the precise molecular mechanism underlying aging-related endothelial inflammation induced by AngII remains elusive. Here, we have tested a hypothesis in cultured rat aortic endothelial cells (ECs) that the removal of AngII-induced senescent cells, preservation of proteostasis, or inhibition of mitochondrial fission attenuates the pro-inflammatory EC phenotype. AngII stimulation in ECs resulted in cellular senescence assessed by senescence-associated ß galactosidase activity. The number of ß galactosidase-positive ECs induced by AngII was attenuated by treatment with a senolytic drug ABT737 or the chemical chaperone 4-phenylbutyrate. Monocyte adhesion assay revealed that the pro-inflammatory phenotype in ECs induced by AngII was alleviated by these treatments. AngII stimulation also increased mitochondrial fission in ECs, which was mitigated by mitochondrial division inhibitor-1. Pretreatment with mitochondrial division inhibitor-1 attenuated AngII-induced senescence and monocyte adhesion in ECs. These findings suggest that mitochondrial fission and endoplasmic reticulum stress have causative roles in endothelial senescence-associated inflammatory phenotype induced by AngII exposure, thus providing potential therapeutic targets in age-related cardiovascular diseases.


Asunto(s)
Angiotensina II/farmacología , Células Endoteliales/citología , Mitocondrias/metabolismo , Monocitos/citología , Animales , Compuestos de Bifenilo/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Monocitos/efectos de los fármacos , Nitrofenoles/farmacología , Fenotipo , Fenilbutiratos/farmacología , Piperazinas/farmacología , Proteostasis , Ratas , Sulfonamidas/farmacología , Células THP-1
19.
Annu Rev Pharmacol Toxicol ; 56: 627-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26566153

RESUMEN

Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.


Asunto(s)
Sistema Cardiovascular/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional/fisiología , Animales , Humanos
20.
Clin Sci (Lond) ; 133(19): 2023-2028, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31654572

RESUMEN

Endoplasmic reticulum (ER) and mitochondria are crucial organelles for cell homeostasis and alterations of these organelles have been implicated in cardiovascular disease. However, their roles in abdominal aortic aneurysm (AAA) pathogenesis remain largely unknown. In a recent issue of Clinical Science, Navas-Madronal et al. ((2019), 133(13), 1421-1438) reported that enhanced ER stress and dysregulation of mitochondrial biogenesis are associated with AAA pathogenesis in humans. The authors also proposed that disruption in oxysterols network such as an elevated concentration of 7-ketocholestyerol in plasma is a causative factor for AAA progression. Their findings highlight new insights into the underlying mechanism of AAA progression through ER stress and dysregulation of mitochondrial biogenesis. Here, we will discuss the background, significance of the study, and future directions.


Asunto(s)
Aneurisma de la Aorta Abdominal , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Humanos , Mitocondrias , Biogénesis de Organelos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA