Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 77, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459514

RESUMEN

BACKGROUND: Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS: AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS: In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.


Asunto(s)
N-Acetil Muramoil-L-Alanina Amidasa , Staphylococcus , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo
2.
Mol Microbiol ; 117(5): 986-1001, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35072960

RESUMEN

Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces, and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared with the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, Staphylococcus paraxylosus, and Staphylococcus nepalensis and additionally encoded in a small group of Staphylococcus cohnii and Staphylococcus saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.


Asunto(s)
Adhesivos , Proteínas de la Membrana , Adhesivos/metabolismo , Biopelículas , Proteínas de la Membrana/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo
3.
BMC Microbiol ; 23(1): 14, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36639757

RESUMEN

BACKGROUND: Tetragenococcus (T.) halophilus is a common member of the microbial consortia of food fermented under high salt conditions. These comprises salty condiments based on soy or lupine beans, fish sauce, shrimp paste and brined anchovies. Within these fermentations this lactic acid bacterium (LAB) is responsible for the formation of lactic and other short chain acids that contribute to the flavor and lower the pH of the product. In this study, we investigated the transcriptomic profile of the two T. halophilus strains TMW 2.2254 and TMW 2.2256 in a lupine moromi model medium supplied with galactose. To get further insights into which genomic trait is important, we used a setup with two strains. That way we can determine if strain dependent pathways contribute to the overall fitness. These strains differ in the ability to utilize L-arginine, L-aspartate, L-arabinose, D-sorbitol, glycerol, D-lactose or D-melibiose. The lupine moromi model medium is an adapted version of the regular MRS medium supplied with lupine peptone instead of casein peptone and meat extract, to simulate the amino acid availabilities in lupine moromi. RESULTS: The transcriptomic profiles of the T. halophilus strains TMW 2.2254 and TMW 2.2256 in a lupine peptone-based model media supplied with galactose, used as simulation media for a lupine seasoning sauce fermentation, were compared to the determine potentially important traits. Both strains, have a great overlap in their response to the culture conditions but some strain specific features such as the utilization of glycerol, sorbitol and arginine contribute to the overall fitness of the strain TMW 2.2256. Interestingly, although both strains have two non-identical copies of the tagatose-6P pathway and the Leloir pathway increased under the same conditions, TMW 2.2256 prefers the degradation via the tagatose-6P pathway while TMW 2.2254 does not. Furthermore, TMW 2.2256 shows an increase in pathways required for balancing out the intracellular NADH/NADH+ ratios. CONCLUSIONS: Our study reveals for the first time, that both versions of tagatose-6P pathways encoded in both strains are simultaneously active together with the Leloir pathway and contribute to the degradation of galactose. These findings will help to understand the strain dependent features that might be required for a starter strain in lupine moromi.


Asunto(s)
Enterococcaceae , Microbiología de Alimentos , Lupinus , Enterococcaceae/genética , Enterococcaceae/metabolismo , Fermentación , Galactosa/metabolismo , Glicerol , Lupinus/microbiología , NAD/metabolismo , Peptonas/metabolismo , Sorbitol/metabolismo , Transcriptoma
4.
Artículo en Inglés | MEDLINE | ID: mdl-37339070

RESUMEN

Four strains of members of the genus Bombella were isolated from samples associated with the western honey bee Apis mellifera, which could not be assigned to a species with a validly published name. Strains TMW 2.2543T, TMW 2.2556T, TMW 2.2558T and TMW 2.2559T exhibit in silico DNA-DNA hybridisation (isDDH) and orthologous average nucleotide identity (orthoANI) values below species delineation thresholds compared with all described species of the genus Bombella and with each other. TMW 2.2556T and TMW 2.2558T form their own clade within the genus. The major respiratory quinone of all strains was Q-10. The composition of cellular fatty acids was diverse between strains. All strains stained Gram-negative, were rod-shaped, strictly aerobic, pellicle-forming, catalase-positive, oxidase-negative, mesophilic and grew over a wide pH range; they were halosensitive but glucose-tolerant. Unlike the other studied strains, TMW 2.2558T was non-motile. Phylogenetic, chemotaxonomic and physiological analyses revealed a clear distinction between all the strains and species with validly published names. All the data support the proposition of four novel species within the genus Bombella, namely Bombella pluederhausensis sp. nov., Bombella pollinis sp. nov., Bombella saccharophila sp. nov. and Bombella dulcis sp. nov., with the respective type strains Bombella pluederhausensis sp. nov. TMW 2.2543T (= DSM 114872T, = LMG 32791T), Bombella pollinis sp. nov. TMW 2.2556T (= DSM 114874T, = LMG 32792T), Bombella saccharophila sp. nov. TMW 2.2558T (= DSM 114875T, = LMG 32793T) and Bombella dulcis sp. nov. TMW 2.2559T (= DSM 114877T, = LMG 32794T). Moreover, three genomes available in the NCBI database that have not yet been described as species with validly published names could be assigned to the proposed species. Bombella sp. ESL0378 and Bombella sp. ESL0385 to Bombella pollinis sp. nov. and Bombella sp. AS1 to Bombella saccharophila sp. nov.


Asunto(s)
Acetobacteraceae , Ácidos Grasos , Abejas , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
5.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37974045

RESUMEN

AIMS: Acetic acid bacteria of the genus Bombella have not been reported to produce exopolysaccharides (EPS). In this study, the formation of fructans by B. apis TMW 2.1884 and B. mellum TMW 2.1889 was investigated. METHODS AND RESULTS: Out of eight strains from four different Bombella species, only B. apis TMW 2.1884 and B. mellum TMW 2.1889 showed EPS formation with 50 g l-1 sucrose as substrate. Both EPS were identified as high-molecular weight (HMW) polymers (106-107 Da) by asymmetric flow field-flow fractionation coupled to multi angle laser light scattering and UV detecors (AF4-MALLS/UV) and high performance size exclusion chromatography coupled to MALLS and refractive index detectors (HPSEC-MALLS/RI) analyses. Monosaccharide analysis via trifluoroacetic acid hydrolysis showed that both EPS are fructans. Determination of glycosidic linkages by methylation analysis revealed mainly 2,6-linked fructofuranose (Fruf) units with additional 2,1-linked Fruf units (10%) and 2,1,6-Fruf branched units (7%). No glycoside hydrolase (GH) 68 family genes that are typically associated with the formation of HMW fructans in bacteria could be identified in the genomes. Through heterologous expression in Escherichia coli Top10, an enzyme of the GH32 family could be assigned to the catalysis of fructan formation. The identified fructosyltransferases could be clearly differentiated phylogenetically and structurally from other previously described bacterial fructosyltransferases. CONCLUSIONS: The formation of HMW fructans by individual strains of the genus Bombella is catalyzed by enzymes of the GH32 family. Analysis of the fructans revealed an atypical structure consisting of 2,6-linked Fruf units as well as 2,1-linked Fruf units and 2,1,6-Fruf units.


Asunto(s)
Fructanos , Sacarosa , Fructanos/química , Glicósido Hidrolasas/genética , Peso Molecular , Catálisis
6.
BMC Microbiol ; 22(1): 267, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348293

RESUMEN

BACKGROUND: Lactic acid bacteria (LAB) are used as starters in a wide variety of food fermentations. While the number of reports of phages infecting other LAB steadily increased over the years, information about phage associated with Latilactobacillus sakei, a frequently used meat starter, remains scarce. RESULTS: In this study, a predictive genomic analysis of 43 Latilactobacillus sakei genomes revealed the presence of 26 intact, eleven questionable and 52 incomplete prophage sequences across all analysed genomes with a range of one to five predicted prophage sequences per strain. Screening 24 sakei strains for inducible prophages by utilising UV light or mitomycin C, we identified seven lysogenic strains showing lysis after induction during subsequent growth monitoring. Electron microscopic analysis revealed fully assembled virions in the purified lysates of four samples, thus confirming successful prophage induction. All virions featured icosahedral, isomeric heads and long, most likely non-contractile tails indicating siphoviruses. By performing phylogenetic analyses with various marker genes as well as full prophage sequences, we displayed a remarkably high diversity of prophages, that share a similar gene module organisation and six different chromosomal integration sites were identified. By sequencing viral DNA purified from lysates of Latilactobacillus sakei TMW 1.46, we demonstrate that simultaneous induction of multiple prophages is possible. CONCLUSIONS: With this work, we not only provide data about the incidence of prophages harboured by the meat starter Latilactobacillus sakei, we also demonstrated their potential to impact growth of their host after induction, as well as forming seemingly fully assembled virions.


Asunto(s)
Bacteriófagos , Profagos , Profagos/genética , Filogenia , Genoma Bacteriano , Lisogenia , Bacteriófagos/genética
7.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36260500

RESUMEN

A Fructobacillus strain was isolated from the flower of a nodding thistle (Carduus nutans) collected in Bavaria, Germany. The strain is Gram-positive, rod-shaped, non-motile, non-sporulating, catalase- and oxidase-negative, and facultatively anaerobic. Growth can be detected at 10-37 °C and pH 4 to 9. The genome size is about 1.56 Mbp and the G+C content is 43.76 mol%. Assignment to the genus Fructobacillus was done by average nucleotide identity (ANI), 16S rRNA gene sequence and multilocus sequence analyses. Calculations of ANI and digital DNA-DNA hybridization values indicate a novel species with Fructobacillus tropaeoli DSM 23246T (93.58% ANI and 57.9 % dDDH) being its closest relative. Therefore, a new species named Fructobacillus cardui sp. nov. with TMW 2.2452T (=DSM 113480T=CECT 30515T) as type strain is proposed.


Asunto(s)
Carduus , ARN Ribosómico 16S/genética , Composición de Base , Carduus/genética , Catalasa/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Filogenia , Ácidos Grasos/química , Flores , Nucleótidos
8.
J Appl Microbiol ; 132(4): 3001-3016, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957661

RESUMEN

AIMS: Natural niches and transmission routes of lactic acid bacteria (LAB) are highly versatile. Proposed routes of transmission to food fermentations are from plant material via insects or vice versa. This study aimed to establish a method for the selective isolation of LAB from insects. METHODS AND RESULTS: Varied parameters that influence growth and selectivity are temperature, type of carbohydrate and atmosphere. Additionally, the effects of antibiotics to suppress non-LAB species were evaluated. A model consortium consisting of 12 species representing different lifestyles was inoculated in a growth medium to identify conditions for the highest diversity and recovery rate. The method was applied to isolate LAB from Drosophila melanogaster, Sitotroga cerealella, Tribolium castaneum and Tenebrio molitor. Isolated species were Leuconostoc mesenteroides, Paucilactobacillus vaccinostercus and Lactiplantibacillus plantarum from D. melanogaster and L. mesenteroides, Pediococcus pentosaceus and Latilactobacillus curvatus from T. molitor. No LAB could be isolated from T. castaneum and S. cerealella. 16S rDNA amplicon sequencing of DNA obtained from insects corroborated part of our results. CONCLUSION: A combination of different enrichment conditions ensures a high probability to isolate LAB species from insects and can be helpful above already known non-cultivation methods. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel method allows to selectively isolate LAB from insects and the strategy of the method is of interest to study other niches.


Asunto(s)
Lactobacillales , Animales , Drosophila melanogaster , Fermentación , Lactobacillaceae
9.
Antonie Van Leeuwenhoek ; 115(8): 955-968, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661053

RESUMEN

Levilactobacillus (L.) brevis TMW 1.2112 is an isolate from wheat beer that produces O2-substituted (1,3)-ß-D-glucan, a capsular exopolysaccharide (EPS) from activated sugar nucleotide precursors by use of a glycosyltransferase. Within the genome sequence of L. brevis TMW 1.2112 enzymes of the glycoside hydrolases families were identified. Glycoside hydrolases (GH) are carbohydrate-active enzymes, able to hydrolyse glycosidic bonds. The enzyme ß-glucosidase BglB (AZI09_02170) was heterologous expressed in Escherichia coli BL21. BglB has a monomeric structure of 83.5 kDa and is a member of the glycoside hydrolase family 3 (GH 3) which strongly favoured substrates with ß-glycosidic bonds. Km was 0.22 mM for pNP ß-D-glucopyranoside demonstrating a high affinity of the recombinant enzyme for the substrate. Enzymes able to degrade the (1,3)-ß-D-glucan of L. brevis TMW 1.2112 have not yet been described. However, BglB showed only a low hydrolytic activity towards the EPS, which was measured by means of the D-glucose releases. Besides, characterised GH 3 ß-glucosidases from various lactic acid bacteria (LAB) were phylogenetically analysed to identify connections in terms of enzymatic activity and ß-glucan formation. This revealed that the family of GH 3 ß-glucosidases of LABs comprises most likely exo-active enzymes which are not directly associated with the ability of these LAB to produce EPS.


Asunto(s)
Glicósido Hidrolasas , Lactobacillaceae/enzimología , beta-Glucanos , Cerveza , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Especificidad por Sustrato , beta-Glucanos/química , beta-Glucanos/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328813

RESUMEN

Bacterial exopolysaccharide (EPS) formation is crucial for biofilm formation, for protection against environmental factors, or as storage compounds. EPSs produced by lactic acid bacteria (LAB) are appropriate for applications in food fermentation or the pharmaceutical industry, yet the dynamics of formation and degradation thereof are poorly described. This study focuses on carbohydrate active enzymes, including glycosyl transferases (GT) and glycoside hydrolases (GH), and their roles in the formation and potential degradation of O2-substituted (1,3)-ß-D-glucan of Levilactobacillus (L.) brevis TMW 1.2112. The fermentation broth of L. brevis TMW 1.2112 was analyzed for changes in viscosity, ß-glucan, and D-glucose concentrations during the exponential, stationary, and early death phases. While the viscosity reached its maximum during the stationary phase and subsequently decreased, the ß-glucan concentration only increased to a plateau. Results were correlated with secretome and proteome data to identify involved enzymes and pathways. The suggested pathway for ß-glucan biosynthesis involved a ß-1,3 glucan synthase (GT2) and enzymes from maltose phosphorylase (MP) operons. The decreased viscosity appeared to be associated with cell lysis as the ß-glucan concentration did not decrease, most likely due to missing extracellular carbohydrate active enzymes. In addition, an operon was discovered containing known moonlighting genes, all of which were detected in both proteome and secretome samples.


Asunto(s)
Levilactobacillus brevis , beta-Glucanos , Carbohidratos , Glucanos/metabolismo , Levilactobacillus brevis/metabolismo , Proteoma/metabolismo , Proteómica , beta-Glucanos/metabolismo
11.
BMC Microbiol ; 21(1): 320, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798831

RESUMEN

BACKGROUND: Tetragenococcus (T.) halophilus can be isolated from a variety of fermented foods, such as soy sauce, different soy pastes, salted fish sauce and from cheese brine or degraded sugar beet thick juice. This species contributes by the formation of short chain acids to the flavor of the product. Recently, T. halophilus has been identified as a dominant species in a seasoning sauce fermentation based on koji made with lupine seeds. RESULTS: In this study we characterized six strains of T. halophilus isolated from lupine moromi fermentations in terms of their adaptation towards this fermentation environment, salt tolerance and production of biogenic amines. Phylogenic and genomic analysis revealed three distinctive lineages within the species T. halophilus with no relation to their isolation source, besides the lineage of T. halophilus subsp. flandriensis. All isolated strains from lupine moromi belong to one lineage in that any of the type strains are absent. The strains form lupine moromi could not convincingly be assigned to one of the current subspecies. Taken together with strain specific differences in the carbohydrate metabolism (arabinose, mannitol, melibiose, gluconate, galactonate) and amino acid degradation pathways such as arginine deiminase pathway (ADI) and the agmatine deiminase pathway (AgDI) the biodiversity in the species of T. halophilus is greater than expected. Among the new strains, some strains have a favorable combination of traits wanted in a starter culture. CONCLUSIONS: Our study characterized T. halophilus strains that were isolated from lupine fermentation. The lupine moromi environment appears to select strains with specific traits as all of the strains are phylogenetically closely related, which potentially can be used as a starter culture for lupine moromi. We also found that the strains can be clearly distinguished phylogenetically and phenotypically from the type strains of both subspecies T. halophilus subsp. halophilus and T. halophilus subsp. flandriensis.


Asunto(s)
Enterococcaceae/aislamiento & purificación , Enterococcaceae/metabolismo , Lupinus/microbiología , Biodiversidad , Enterococcaceae/clasificación , Enterococcaceae/genética , Fermentación , Aromatizantes/metabolismo , Lupinus/metabolismo , Filogenia , Semillas/metabolismo , Semillas/microbiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-33439113

RESUMEN

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella. Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella, for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).


Asunto(s)
Acetobacteraceae/clasificación , Abejas/microbiología , Miel/microbiología , Filogenia , Acetobacteraceae/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Food Microbiol ; 91: 103539, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32539972

RESUMEN

Some beverage-spoiling lactic acid bacteria (LAB) produce capsular ß-glucans from UDP-glucose, which is accompanied by cell network formation causing viscosity increases of liquids. This feature of certain LAB is feared in breweries but could be useful for structural and nutritional improvement of baked goods, provided that these LAB are suited for the manufacture of sourdoughs. The aim of this study was to investigate the persistence and ß-glucan formation of the brewery isolates Levilactobacillus (L.) brevis TMW 1.2112 and Pediococcus (P.) claussenii TMW 2.340 in wheat and rye sourdoughs. Both the wild-type strains and the respective ß-glucan-deficient mutants were dominant in wheat and rye sourdoughs and acidified them to characteristic pH ranges. The formation of ß-glucan capsules during sourdough fermentations was stable in L. brevis TMW 1.2112 in contrast to P. claussenii TMW 2.340. Wheat sourdoughs fermented with the ß-glucan producing L. brevis TMW 1.2112 cells were significantly more viscous than doughs fermented by the P. claussenii TMW 2.340 cells and the applied mutant strains. In conclusion, L. brevis TMW 1.2112 and P. claussenii TMW 2.340 were suited and persistent wheat and rye sourdough starters, while the in situ ß-glucan formation in sourdoughs was hardly detectable in case of P. claussenii.


Asunto(s)
Cerveza/microbiología , Pan/microbiología , Lactobacillales/metabolismo , Secale , Triticum , beta-Glucanos/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Pan/análisis , Recuento de Colonia Microbiana , Fermentación , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Lactobacillales/genética , Lactobacillales/crecimiento & desarrollo , Lactobacillales/aislamiento & purificación , Levilactobacillus brevis/genética , Levilactobacillus brevis/crecimiento & desarrollo , Levilactobacillus brevis/aislamiento & purificación , Levilactobacillus brevis/metabolismo , Mutación , Pediococcus/genética , Pediococcus/crecimiento & desarrollo , Pediococcus/aislamiento & purificación , Pediococcus/metabolismo , Secale/microbiología , Triticum/microbiología , Viscosidad , beta-Glucanos/análisis
14.
Arch Microbiol ; 201(3): 337-347, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30635671

RESUMEN

Clustered regularly interspaced palindromic repeats (CRISPR)-Cas (CRISPR-associated) structures, known as prokaryotes 'immune system', have been successfully applied for genetic engineering and genotyping purposes for a variety of microorganisms. Here we investigated 50 Lactobacillus (L.) sakei genomes and found 13 of them as CRISPR-Cas positive. The majority of positive genomes contain type II-A system, which appears to be widespread across food born lactic acid bacteria. However, a type II-C system with low similarity in Cas protein sequence to related II-C structures is rarely present in the genomes. We depicted a correlation between prophages integrated in the genomes and the presence/absence of CRISPR-Cas systems and identified the novel protospacer adjunction motifs (PAMs) (a/g)AAA for the II-A and (g/a)(c/t)AC for the II-C system including the corresponding tracrRNAs, creating the basis for the development of new Cas-mediated genome editing tools. Moreover, we performed a PCR screening for 81 selected L. sakei isolates and identified 25 (31%) isolates as CRISPR-Cas positive with hypervariable spacer content. Comparative sequence analysis of 33 repeat-spacer arrays resulted in 18 CRISPR genotypes, revealing insights into evolutionary relationships between different strains and illustrating possible applications for the research and development of starter cultures, e.g., the usage for strain differentiation in assertiveness experiments or the development of bacteriophage-resistant strains.


Asunto(s)
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Latilactobacillus sakei/genética , Evolución Biológica , Genotipo , Reacción en Cadena de la Polimerasa
15.
Mol Cell Probes ; 37: 60-63, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28823562

RESUMEN

Actin as the main constitution of cytoskeleton in host cells plays an important role in mediating bacterial colonization. To identify the actin-binding proteins in Lactobacillus (L.) paracasei, L. plantarum, and L. brevis, actin immobilized to 24-well plate was used to probe adhesion proteins. Five adhesion proteins were identified and characterized by electrophoresis and LC-MS/MS: pyruvate kinase (PK), glucose-6-phosphate isomerase (PGI), phosphoglycerate kinase (PGK), chaperonin GroEL, and EF-Tu, all of which could display on the cell surface, indicating their possible role in mediating bacterial adhesion to host. This is in accordance with previous studies, which reported that these five proteins participated in and promoted the adhesion of pathogen or lactic acid bacteria to host. Moreover, PGK-actin binding domain analysis reveals that lysine (K) at amino acid position 127 in PGK might play a key role in mediating bacterial attachment to actin.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Lactobacillus/fisiología , Proteínas de Microfilamentos/metabolismo , Proteínas Bacterianas/genética , Chaperoninas/genética , Chaperoninas/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Interacciones Microbiota-Huesped , Lisina/metabolismo , Proteínas de Microfilamentos/genética , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
16.
Arch Microbiol ; 199(2): 203-213, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27655246

RESUMEN

Enterohemorrhagic E. coli O157:H7 (EHEC) shorten the lifespan of Caenorhabditis elegans compared to avirulent bacteria. Co-feeding EHEC with Enterococcus faecalis Symbioflor® significantly increased the worms' lifespan. The transcriptome of EHEC grown in vitro with or without Symbioflor® was analyzed using RNA-seq. The analysis revealed downregulation of several virulence-associated genes in the presence of Symbioflor®, including virulence key genes (e.g., LEE, flagellum, quorum-sensing). The downregulation of the LEE genes was corroborated by lux-transposon mutants. Upregulated genes included acid response genes, due to a decrease in pH exerted by Symbioflor®. Further genes indicate cellular stress in EHEC (e.g. prophage/mobile elements involved in excision, cell lysis, and cell division inhibition). Thus, the observed protection of C. elegans during an EHEC infection by the probiotic Symbioflor® is suggested to be caused by triggering concomitant transcriptomic changes. To verify the biological relevance of this modulation, exemplary genes found to be influenced by Symbioflor® were knocked out (fliD, espB, Z3136, Z3917, and L7052). The lifespan of nematodes changed when using knock-outs as food source and the effect could be complemented in trans. In summary, Symbioflor® appears to be a protective probiotic in the nematode model.


Asunto(s)
Enterococcus faecalis/fisiología , Escherichia coli O157/patogenicidad , Probióticos , Animales , Caenorhabditis elegans/microbiología , Regulación hacia Abajo , Escherichia coli O157/genética , Genes Bacterianos , Interacciones Microbianas/genética , Percepción de Quorum/genética , Transcriptoma , Factores de Virulencia/genética
17.
Curr Microbiol ; 74(2): 247-256, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27999938

RESUMEN

A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.


Asunto(s)
Bifidobacterium/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Lactobacillus/enzimología , Bifidobacterium/genética , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Clonación Molecular , Ácidos Cumáricos/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Lactobacillus/genética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
18.
Int J Syst Evol Microbiol ; 66(1): 236-242, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26486967

RESUMEN

The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).


Asunto(s)
Microbiología de Alimentos , Lactobacillus/citología , Productos de la Carne/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Dipéptidos/química , Ácidos Grasos/química , Fermentación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
19.
Arch Microbiol ; 196(2): 109-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362949

RESUMEN

This study focuses on the impact of actin on adhesion and translocation of Enterococcus (E.) faecalis OG1RF, E. faecalis Symbioflor(®), and E. faecalis V583. Insight into the role of actin aggregation in the mediation of bacterial adhesion and translocation was provided by a two-chamber translocation assay, which employed Ptk6 cells. Determination of translocation rates, cytochalasin D treatment, and laser scanning confocal microscopic observation revealed actin as a predominant brace for enterococci to pass through the epithelial cell layer. As the three enterococci had moderate adhesion ability to actin, actin-binding proteins were isolated and characterized by LC-MS/MS. The isolated proteins were identified as pyruvate formate lyase, enolase, glyceraldehyde-3-phosphate dehydrogenase, and GroEL. All these proteins belong to two major groups of moonlighting proteins, i.e., proteins, which display additional functions other than their described major biochemical catalysis. Both groups of moonlight proteins were determined to be associated with epithelial cell binding.


Asunto(s)
Actinas/metabolismo , Adhesión Bacteriana , Enterococcus faecalis/fisiología , Animales , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Línea Celular , Enterococcus faecalis/metabolismo , Humanos , Ratones , Proteínas de Microfilamentos/aislamiento & purificación , Proteínas de Microfilamentos/metabolismo , Espectrometría de Masas en Tándem
20.
Arch Microbiol ; 196(6): 423-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700373

RESUMEN

We have performed a transcriptomic in vivo study with Enterococcus faecalis OG1RF in the intestine of living mice to identify novel latent and adaptive fitness determinants within E. faecalis. From 2,658 genes that are present in E. faecalis strain OG1RF, 124 genes were identified as significantly differentially expressed within the intestinal tract of living mice as compared to exponential growth in BHI broth. The groups of significantly up- or down-regulated genes consisted of 94 and 30 genes, respectively, for which 46 and 18 a clear annotation to a functionally described protein was found. These included genes involved in energy metabolism (e.g., dhaK and glpK pathway), transport and binding mechanisms (e.g., phosphoenolpyruvate carbohydrate PTS) as well as fatty acid metabolism (fab genes). The novel putative fitness determinants found in this work may be helpful for future studies of E. faecalis adaptation to the intestinal tract, which is also a prerequisite for infection in a compromised or inflamed host.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Enterococcus faecalis/fisiología , Regulación Bacteriana de la Expresión Génica , Intestinos/microbiología , Animales , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Perfilación de la Expresión Génica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA