Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108604

RESUMEN

Autism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician's assessment and family's awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/genética , Proyectos Piloto , Proteómica , Biomarcadores/metabolismo , Proteoma/metabolismo
2.
Int J Mol Sci ; 24(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175824

RESUMEN

Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteómica , Proyectos Piloto , Biomarcadores
3.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682821

RESUMEN

Cognitive dysfunctions such as mild cognitive impairment (MCI), Alzheimer's disease (AD), and other forms of dementia are recognized as common comorbidities of type 2 diabetes mellitus (T2DM). Currently, there are no disease-modifying therapies or definitive clinical diagnostic and prognostic tools for dementia, and the mechanisms underpinning the link between T2DM and cognitive dysfunction remain equivocal. Some of the suggested pathophysiological mechanisms underlying cognitive decline in diabetes patients include hyperglycemia, insulin resistance and altered insulin signaling, neuroinflammation, cerebral microvascular injury, and buildup of cerebral amyloid and tau proteins. Given the skyrocketing global rates of diabetes and neurodegenerative disorders, there is an urgent need to discover novel biomarkers relevant to the co-morbidity of both conditions to guide future diagnostic approaches. This review aims to provide a comprehensive background of the potential risk factors, the identified biomarkers of diabetes-related cognitive decrements, and the underlying processes of diabetes-associated cognitive dysfunction. Aging, poor glycemic control, hypoglycemia and hyperglycemic episodes, depression, and vascular complications are associated with increased risk of dementia. Conclusive research studies that have attempted to find specific biomarkers are limited. However, the most frequent considerations in such investigations are related to C reactive protein, tau protein, brain-derived neurotrophic factor, advanced glycation end products, glycosylated hemoglobin, and adipokines.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Pronóstico , Proteínas tau/metabolismo
4.
Front Mol Neurosci ; 16: 1222506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908488

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by defects in two core domains, social/communication skills and restricted/repetitive behaviors or interests. There is no approved biomarker for ASD diagnosis, and the current diagnostic method is based on clinical manifestation, which tends to vary vastly between the affected individuals due to the heterogeneous nature of ASD. There is emerging evidence that supports the implication of the immune system in ASD, specifically autoimmunity; however, the role of autoantibodies in ASD children is not yet fully understood. Materials and methods: In this study, we screened serum samples from 93 cases with ASD and 28 healthy controls utilizing high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. Our goal was to identify autoantibodies with differential expressions in ASD and to gain insights into the biological significance of these autoantibodies in the context of ASD pathogenesis. Result: Our autoantibody expression analysis identified 29 differential autoantibodies in ASD, 4 of which were upregulated and 25 downregulated. Subsequently, gene ontology (GO) and network analysis showed that the proteins of these autoantibodies are expressed in the brain and involved in axonal guidance, chromatin binding, and multiple metabolic pathways. Correlation analysis revealed that these autoantibodies negatively correlate with the age of ASD subjects. Conclusion: This study explored autoantibody reactivity against self-antigens in ASD individuals' serum using a high-throughput assay. The identified autoantibodies were reactive against proteins involved in axonal guidance, synaptic function, amino acid metabolism, fatty acid metabolism, and chromatin binding.

5.
Front Neurol ; 14: 1256745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107644

RESUMEN

Background: Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods: This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results: The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion: We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA