Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 64(1): 100305, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273647

RESUMEN

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.


Asunto(s)
PPAR gamma , Esterol Esterasa , Ratones , Animales , Rosiglitazona/farmacología , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipólisis/fisiología , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834530

RESUMEN

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Endocannabinoides/metabolismo , Lipólisis , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/genética
3.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639107

RESUMEN

Vemurafenib (PLX4032), small-molecule inhibitor of mutated BRAFV600E protein, has emerged as a potent anti-cancer agent against metastatic melanoma harboring BRAFV600E mutation. Unfortunately, the effect of PLX4032 in the treatment of metastatic BRAF mutated colorectal cancer (CRC) is less potent due to high incidence of fast-developing chemoresistance. It has been demonstrated that sphingolipids are important mediators of chemoresistance to various therapies in colon cancer. In this study, we will explore the role of major regulators of sphingolipid metabolism and signaling in the development of resistance to vemurafenib in BRAF mutant colon cancer cells. The obtained data revealed significantly increased expression levels of activated sphingosine kinases (SphK1 and SphK2) in resistant cells concomitant with increased abundance of sphingosine-1-phosphate (S1P) and its precursor sphingosine, which was accompanied by increased expression levels of the enzymes regulating the ceramide salvage pathway, namely ceramide synthases 2 and 6 and acid ceramidase, especially after the exposure to vemurafenib. Pharmacological inhibition of SphK1/SphK2 activities or modulation of ceramide metabolism by exogenous C6-ceramide enhanced the anti-proliferative effect of PLX4032 in resistant RKO cells in a synergistic manner. It is important to note that the inhibition of SphK2 by ABC294640 proved effective at restoring the sensitivity of resistant cells to vemurafenib at the largest number of combinations of sub-toxic drug concentrations with minimal cytotoxicity. Furthermore, the obtained findings revealed that enhanced anti-proliferative, anti-migratory, anti-clonogenic and pro-apoptotic effects of a combination treatment with ABC294640 and PLX4032 relative to either drug alone were accompanied by the inhibition of S1P-regulated AKT activity and concomitant abrogation of AKT-mediated cellular levels of nucleophosmin and translationally-controlled tumour protein. Collectively, our study suggests the possibility of using the combination of ABC294640 and PLX4032 as a novel therapeutic approach to combat vemurafenib resistance in BRAF mutant colon cancer, which warrants additional preclinical validation studies.


Asunto(s)
Adamantano/análogos & derivados , Biomarcadores de Tumor/antagonistas & inhibidores , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Piridinas/farmacología , Vemurafenib/farmacología , Adamantano/farmacología , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt , Células Tumorales Cultivadas , Proteína Tumoral Controlada Traslacionalmente 1
4.
J Lipid Res ; 61(7): 995-1003, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350080

RESUMEN

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid, is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endolysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and parenchymal and nonparenchymal cells. Tissue samples were obtained from fed, fasted, 2 h refed, and insulin-treated mice, as well as from mice housed at 5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles that were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels, indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue- and cell-type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP plays a role in the functional adaption to nutrient starvation and ambient temperature.


Asunto(s)
Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Monoglicéridos/metabolismo , Animales , Endosomas/metabolismo , Macrófagos/citología , Ratones
5.
J Biol Chem ; 294(23): 9118-9133, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023823

RESUMEN

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl ester (CE) and retinyl ester (RE) and triglyceride (TG). Mice globally lacking LAL accumulate CE most prominently in the liver. The severity of the CE accumulation phenotype progresses with age and is accompanied by hepatomegaly and hepatic cholesterol crystal deposition. In contrast, hepatic TG accumulation is much less pronounced in these mice, and hepatic RE levels are even decreased. To dissect the functional role of LAL for neutral lipid ester mobilization in the liver, we generated mice specifically lacking LAL in hepatocytes (hep-LAL-ko). On a standard chow diet, hep-LAL-ko mice exhibited increased hepatic CE accumulation but unaltered TG and RE levels. Feeding the hep-LAL-ko mice a vitamin A excess/high-fat diet (VitA/HFD) further increased hepatic cholesterol levels, but hepatic TG and RE levels in these mice were lower than in control mice. Performing in vitro activity assays with lysosome-enriched fractions from livers of mice globally lacking LAL, we detected residual acid hydrolytic activities against TG and RE. Interestingly, this non-LAL acid TG hydrolytic activity was elevated in lysosome-enriched fractions from livers of hep-LAL-ko mice upon VitA/HFD feeding. In conclusion, the neutral lipid ester phenotype in livers from hep-LAL-ko mice indicates that LAL is limiting for CE turnover, but not for TG and RE turnovers. Furthermore, in vitro hydrolase activity assays revealed the existence of non-LAL acid hydrolytic activities for TG and RE. The corresponding acid lipase(s) catalyzing these reactions remains to be identified.


Asunto(s)
Ésteres del Colesterol/metabolismo , Diterpenos/metabolismo , Hígado/metabolismo , Esterol Esterasa/genética , Triglicéridos/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Colesterol/sangre , Colesterol/metabolismo , Dieta Alta en Grasa , Diterpenos/química , Hepatocitos/citología , Hepatocitos/metabolismo , Lípidos/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípidos/análisis , Esterol Esterasa/deficiencia , Esterol Esterasa/metabolismo , Vitamina A/administración & dosificación
6.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050431

RESUMEN

During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.


Asunto(s)
Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Peroxidasa/metabolismo , Sepsis/metabolismo , Esfingolípidos/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Capilares/metabolismo , Capilares/patología , Línea Celular , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/patología , Homeostasis , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Sepsis/patología
7.
J Lipid Res ; 60(8): 1365-1378, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31164391

RESUMEN

Triglycerides (TGs) are the main energy storage form that accommodates changing organismal energy demands. In Drosophila melanogaster, the TG lipase Brummer is centrally important for body fat mobilization. Its gene brummer (bmm) encodes the ortholog of mammalian adipose TG lipase, which becomes activated by α/ß-hydrolase domain-containing 5 (ABHD5/CGI-58), one member of the paralogous gene pair, α/ß-hydrolase domain-containing 4 (ABHD4) and ABHD5 In Drosophila, the pummelig (puml) gene encodes the single sequence-related protein to mammalian ABHD4/ABHD5 with unknown function. We generated puml deletion mutant flies, that were short-lived as a result of lipid metabolism changes, stored excess body fat at the expense of glycogen, and exhibited ectopic fat storage with altered TG FA profile in the fly kidneys, called Malpighian tubules. TG accumulation in puml mutants was not associated with increased food intake but with elevated lipogenesis; starvation-induced lipid mobilization remained functional. Despite its structural similarity to mammalian ABHD5, Puml did not stimulate TG lipase activity of Bmm in vitro. Rather, Puml acted as a phospholipase that localized on lipid droplets, mitochondria, and peroxisomes. Together, these results show that the ABHD4/5 family member Puml is a versatile phospholipase that regulates Drosophila body fat storage and energy metabolism.


Asunto(s)
Proteínas de Drosophila/metabolismo , Metabolismo Energético , Lipasa/metabolismo , Lipogénesis , Lisofosfolipasa/metabolismo , Túbulos de Malpighi/enzimología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Eliminación de Gen , Lipasa/genética , Lisofosfolipasa/genética
8.
J Lipid Res ; 60(5): 1020-1031, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30894461

RESUMEN

Bis(monoacylglycerol)phosphate (BMP) is a phospholipid that is crucial for lipid degradation and sorting in acidic organelles. Genetic and drug-induced lysosomal storage disorders (LSDs) are associated with increased BMP concentrations in tissues and in the circulation. Data on BMP in disorders other than LSDs, however, are scarce, and key enzymes regulating BMP metabolism remain elusive. Here, we demonstrate that common metabolic disorders and the intracellular BMP hydrolase α/ß-hydrolase domain-containing 6 (ABHD6) affect BMP metabolism in mice and humans. In mice, dietary lipid overload strongly affects BMP concentration and FA composition in the liver and plasma, similar to what has been observed in LSDs. Notably, distinct changes in the BMP FA profile enable a clear distinction between lipid overload and drug-induced LSDs. Global deletion of ABHD6 increases circulating BMP concentrations but does not cause LSDs. In humans, nonalcoholic fatty liver disease and liver cirrhosis affect the serum BMP FA composition and concentration. Furthermore, we identified a patient with a loss-of-function mutation in the ABHD6 gene, leading to an altered circulating BMP profile. In conclusion, our results suggest that common metabolic diseases and ABHD6 affect BMP metabolism in mice and humans.


Asunto(s)
Lisofosfolípidos/metabolismo , Enfermedades Metabólicas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Lisofosfolípidos/sangre , Masculino , Enfermedades Metabólicas/sangre , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/genética , Monoglicéridos/sangre , Fenotipo
9.
J Biol Chem ; 293(15): 5544-5555, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29414770

RESUMEN

S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , S-Adenosilhomocisteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosilhomocisteinasa/genética , Ácidos Grasos/genética , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Modelos Biológicos , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Lipid Res ; 59(12): 2360-2367, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30361410

RESUMEN

Mutations in the genes coding for patatin-like phospholipase domain-containing 1 (PNPLA1) and α/ß-hydrolase domain-containing 5 (ABHD5), also known as comparative gene identification 58, are causative for ichthyosis, a severe skin barrier disorder. Individuals with mutations in either of these genes show a defect in epidermal ω-O-acylceramide (AcylCer) biosynthesis, suggesting that PNPLA1 and ABHD5 act in the same metabolic pathway. In this report, we identified ABHD5 as a coactivator of PNPLA1 that stimulates the esterification of ω-hydroxy ceramides with linoleic acid for AcylCer biosynthesis. ABHD5 interacts with PNPLA1 and recruits the enzyme to its putative triacylglycerol substrate onto cytosolic lipid droplets. Conversely, alleles of ABHD5 carrying point mutations associated with ichthyosis in humans failed to accelerate PNPLA1-mediated AcylCer biosynthesis. Our findings establish an important biochemical function of ABHD5 in interacting with PNPLA1 to synthesize crucial epidermal lipids, emphasizing the significance of these proteins in the formation of a functional skin permeability barrier.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Ceramidas/metabolismo , Epidermis/metabolismo , Piel/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Alelos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Lipasa/genética , Lipasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Permeabilidad , Unión Proteica , Esfingosina N-Aciltransferasa/metabolismo
11.
J Lipid Res ; 59(10): 1805-1817, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30072447

RESUMEN

Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX+/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX+/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS-fed ATX+/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function.


Asunto(s)
Resistencia a la Insulina , Lisofosfolípidos/metabolismo , Mitocondrias/patología , Obesidad/metabolismo , Obesidad/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Animales , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Especificidad de Órganos
12.
J Biol Chem ; 292(46): 19087-19098, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28887301

RESUMEN

Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes.


Asunto(s)
Hidrolasas/metabolismo , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Lisofosfatidilcolinas/metabolismo , Animales , Células COS , Dominio Catalítico , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Hidrolasas/química , Lipasa/química , Lisofosfolipasa
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 247-265, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29229414

RESUMEN

Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A2 (hGX sPLA2) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA2-induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Gotas Lipídicas/enzimología , Proteínas de Neoplasias/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Ácidos Grasos Omega-3/genética , Ácidos Grasos Omega-6/genética , Femenino , Humanos , Lipasa/genética , Lipasa/metabolismo , Gotas Lipídicas/patología , Proteínas de Neoplasias/genética , Fosfolipasas A2 Secretoras/genética , Triglicéridos/genética , Triglicéridos/metabolismo
14.
J Biol Chem ; 291(22): 11865-75, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27036938

RESUMEN

Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.


Asunto(s)
Evolución Biológica , Etanol/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Monoacilglicerol Lipasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Células Cultivadas , Cromatografía en Capa Delgada , Cromatografía de Gases y Espectrometría de Masas , Hepatocitos/citología , Humanos , Inactivación Metabólica , Ratones , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
J Biol Chem ; 291(2): 913-23, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26565024

RESUMEN

Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.


Asunto(s)
Astrocitos/enzimología , Eliminación de Gen , Inflamación/enzimología , Inflamación/patología , Monoacilglicerol Lipasas/metabolismo , Sistema Nervioso/enzimología , Sistema Nervioso/patología , Animales , Ácidos Araquidónicos/metabolismo , Astrocitos/patología , Conducta Animal , Encéfalo/enzimología , Citocinas/metabolismo , Endocannabinoides/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glicéridos/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Especificidad de Órganos , Receptor Cannabinoide CB1/metabolismo
16.
J Biol Chem ; 291(34): 17977-87, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27354281

RESUMEN

Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Duodeno/enzimología , Yeyuno/enzimología , Retinoides/metabolismo , Esterol Esterasa/metabolismo , Animales , Hidrolasas de Éster Carboxílico/genética , Ésteres del Colesterol/genética , Ésteres del Colesterol/metabolismo , Remanentes de Quilomicrones/genética , Remanentes de Quilomicrones/metabolismo , Humanos , Ratones , Ratones Noqueados , Retinoides/genética , Esterol Esterasa/genética , Triglicéridos/genética , Triglicéridos/metabolismo
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 358-368, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28017862

RESUMEN

The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis "master-regulator" PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.


Asunto(s)
Adipocitos Blancos/metabolismo , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Células 3T3-L1 , Adipogénesis/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Línea Celular , Chlorocebus aethiops , Ácidos Grasos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno/fisiología , PPAR gamma/metabolismo , Regulación hacia Arriba/fisiología
18.
J Biol Chem ; 290(50): 29869-81, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26491015

RESUMEN

α/ß Hydrolase domain-containing 6 (ABHD6) can act as monoacylglycerol hydrolase and is believed to play a role in endocannabinoid signaling as well as in the pathogenesis of obesity and liver steatosis. However, the mechanistic link between gene function and disease is incompletely understood. Here we aimed to further characterize the role of ABHD6 in lipid metabolism. We show that mouse and human ABHD6 degrade bis(monoacylglycero)phosphate (BMP) with high specific activity. BMP, also known as lysobisphosphatidic acid, is enriched in late endosomes/lysosomes, where it plays a key role in the formation of intraluminal vesicles and in lipid sorting. Up to now, little has been known about the catabolism of this lipid. Our data demonstrate that ABHD6 is responsible for ∼ 90% of the BMP hydrolase activity detected in the liver and that knockdown of ABHD6 increases hepatic BMP levels. Tissue fractionation and live-cell imaging experiments revealed that ABHD6 co-localizes with late endosomes/lysosomes. The enzyme is active at cytosolic pH and lacks acid hydrolase activity, implying that it degrades BMP exported from acidic organelles or de novo-formed BMP. In conclusion, our data suggest that ABHD6 controls BMP catabolism and is therefore part of the late endosomal/lysosomal lipid-sorting machinery.


Asunto(s)
Endosomas/metabolismo , Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Humanos , Hidrólisis
19.
J Biol Chem ; 290(43): 26141-50, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26350455

RESUMEN

The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Fase G1/genética , Lipólisis/genética , Miocardio/metabolismo , Fase de Descanso del Ciclo Celular/genética , Triglicéridos/metabolismo , Animales , Línea Celular , Pruebas de Función Cardíaca , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
J Lipid Res ; 56(10): 1972-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26330055

RESUMEN

Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/ß-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs.


Asunto(s)
Aciltransferasas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Adipocitos/metabolismo , Animales , Línea Celular , Lipólisis , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Perilipina-2 , Proteoma/metabolismo , Ratas , Proteínas de Unión al Retinol/metabolismo , Ésteres de Retinilo , Triglicéridos/metabolismo , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA