Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(39): 24305-24315, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913060

RESUMEN

Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.


Asunto(s)
Colorantes Fluorescentes/química , Línea Celular , Fluorescencia , Humanos , Microscopía Fluorescente
2.
J Am Chem Soc ; 144(19): 8560-8575, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35523019

RESUMEN

Several fully π-conjugated macrocycles with puckered or cage-type structures were recently found to exhibit aromatic character according to both experiments and computations. We examine their electronic structures and put them in relation to 3D-aromatic molecules (e.g., closo-boranes) and to 2D-aromatic polycyclic aromatic hydrocarbons. Using qualitative theory combined with quantum chemical calculations, we find that the macrocycles explored hitherto should be described as 2D-aromatic with three-dimensional molecular structures (abbr. 2D-aromatic-in-3D) and not as truly 3D-aromatic. 3D-aromatic molecules have highly symmetric structures (or nearly so), leading to (at least) triply degenerate molecular orbitals, and for tetrahedral or octahedral molecules, an aromatic closed-shell electronic structure with 6n + 2 electrons. Conversely, 2D-aromatic-in-3D structures exhibit aromaticity that results from the fulfillment of Hückel's 4n + 2 rule for each macrocyclic path, yet their π-electron counts are coincidentally 6n + 2 numbers for macrocycles with three tethers of equal lengths. It is notable that 2D-aromatic-in-3D macrocyclic cages can be aromatic with tethers of different lengths, i.e., with π-electron counts different from 6n + 2, and they are related to naphthalene. Finally, we identify tetrahedral and cubic π-conjugated molecules that fulfill the 6n + 2 rule and exhibit significant electron delocalization. Yet, their properties resemble those of analogous compounds with electron counts that differ from 6n + 2. Thus, despite the fact that these molecules show substantial π-electron delocalization, they cannot be classified as true 3D-aromatics.


Asunto(s)
Electrones , Teoría Cuántica , Conformación Molecular
3.
J Phys Chem A ; 125(2): 570-584, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33427474

RESUMEN

The aromaticity of cyclic 4nπ-electron molecules in their first ππ* triplet state (T1), labeled Baird aromaticity, has gained growing attention in the past decade. Here we explore computationally the limitations of T1 state Baird aromaticity in macrocyclic compounds, [n]CM's, which are cyclic oligomers of four different monocycles (M = p-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 π-electrons in their main conjugation paths we find that for their T1 states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries. This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans ([n]CFU's) retain Baird aromaticity until larger n than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a 3[n]CFU with a specific n is more strongly Baird-aromatic than the analogous 3[n]CPP while the magnetic indices tell the opposite. To construct large T1 state Baird-aromatic [n]CM's, the design should be such that the T1 state Baird aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel aromaticity of one or a few monocycles and semilocalized triplet diradical character. Monomers with lower Hückel aromaticity in S0 than benzene (e.g., furan) that do not impose steric congestion are preferred. Structural confinement imposed by, e.g., methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T1 state aromaticity, we reveal the analogy to the Hückel aromaticity of the corresponding closed-shell dications yet observe stronger Hückel aromaticity in the macrocyclic dications than Baird aromaticity in the T1 states of the neutral macrocycles.

4.
Angew Chem Int Ed Engl ; 60(40): 21817-21823, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34097333

RESUMEN

1,3,2,4-Diazadiboretidine, an isoelectronic heteroanalogue of cyclobutadiene, is an interesting chemical species in terms of comparison with the carbon system, whereas its properties have never been investigated experimentally. According to Baird's rule, Hückel antiaromatic cyclobutadiene acquires aromaticity in the lowest triplet state. Here we report experimental and theoretical studies on the ground- and excited-state antiaromaticity/aromaticity as well as the photophysical properties of an isolable 1,3,2,4-diazadiboretidine derivative. The crystal structure of the diazadiboretidine derivative revealed that the B2 N2 ring adopts a planar rhombic geometry in the ground state. Yet, theoretical calculations showed that the B2 N2 ring turns to a square geometry with a nonaromatic character in the lowest triplet state. Notably, the diazadiboretidine derivative has the lowest singlet and triplet states lying at close energy levels and displays blue phosphorescence.

5.
J Am Chem Soc ; 142(12): 5602-5617, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32107921

RESUMEN

Singlet exciton fission photovoltaic technology requires chromophores with their lowest excited states arranged so that 2E(T1) < E(S1) and E(S1) < E(T2). Herein, qualitative theory and quantum chemical calculations are used to develop explicit strategies on how to use Baird's 4n rule on excited-state aromaticity, combined with Hückel's 4n + 2 rule for ground-state aromaticity, to tailor new potential chromophores for singlet fission. We first analyze the E(T1), E(S1), and E(T2) of benzene and cyclobutadiene (CBD) as excited-state antiaromatic and aromatic archetypes, respectively, and reveal that CBD fulfills the criteria on the state ordering for a singlet fission chromophore. We then look at fulvenes, a class of compounds that can be tuned by choice of substituents from Baird-antiaromatic to Baird-aromatic in T1 and S1 and from Hückel-aromatic to Hückel-antiaromatic in S0. The T1 and S1 states of most substituted fulvenes (159 of 225) are described by singly excited HOMO → LUMO configurations, providing a rational for the simultaneous tuning of E(T1) and E(S1) along an approximate (anti)aromaticity coordinate. Key to the tunability is the exchange integral (KH,L), which ideally is constant throughout the compound class, providing a constant ΔE(S1 - T1). This leads us to a geometric model for the identification of singlet fission chromophores, and we explore what factors limit the model. Candidates with calculated E(T1) values of ∼1 eV or higher are identified among benzannelated 4nπ-electron compound classes and siloles. In brief, it is clarified how the joint utilization of Baird's 4n and Hückel's 4n + 2 rules, together with substituent effects (electronic and steric) and benzannelation, can be used to tailor new chromophores with potential use in singlet fission photovoltaics.

6.
J Org Chem ; 85(8): 5158-5172, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32189503

RESUMEN

According to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by 1H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography. The experimental results are further confirmed by theoretical studies including the calculation of several aromaticity indices (NICS, ACID, HOMA, FLU, MCI). In the case of the angular molecule, double bond-localization within the connecting six-membered ring resulted in reduced antiaromaticity of both the BCB and pentalene subunits, while the linear structure provided a competitive situation for the two unequal [4n]π subunits. We found that in the latter case the BCB unit alleviated its unfavorable antiaromaticity more efficiently, leaving the pentalene with strong antiaromaticity. Thus, a reversed structure-antiaromaticity relationship when compared to aceno-pentalenes was achieved.

7.
Chemistry ; 24(39): 9853-9859, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29665099

RESUMEN

Electrides are ionic substances containing isolated electrons. These confined electrons are topologically characterised by a quasi-atom, that is, a non-nuclear attractor (NNA) of the electron density. The electronic structure of the octahedral 4 A1g Li6+ and 5 A1g Be6 species shows that these species have a large number of NNAs. These NNAs have highly delocalised electron densities and, as a result, the chemical bonding pattern of these systems is reminiscent of that in solid metals, in which metal cations are surrounded by a "sea" of delocalised valence electrons. We propose the term metal cluster electrides to refer to this new class of compounds. In this study, we establish a computational protocol to identify, characterize, and design metal cluster electrides and we elucidate the intricate bonding patterns of this particular type of species.

8.
Phys Chem Chem Phys ; 20(5): 3845-3846, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29359780

RESUMEN

Correction for 'Planar vs. three-dimensional X62-, X2Y42-, and X3Y32- (X, Y = B, Al, Ga) metal clusters: an analysis of their relative energies through the turn-upside-down approach by Ouissam El Bakouri et al., Phys. Chem. Chem. Phys., 2016, 18, 21102-21110.

9.
Phys Chem Chem Phys ; 20(17): 11577-11585, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417103

RESUMEN

Controlling the regioselectivity in the exohedral functionalization of fullerenes and endohedral metallofullerenes is essential to produce specific desired fullerene derivatives. In this work, using density functional theory (DFT) calculations, we show that the regioselectivity of the Diels-Alder (DA) cycloaddition of cyclopentadiene to 2S+1C60 changes from the usual [6,6] addition in the singlet ground state to the [5,6] attack in high spin states of C60. Changes in the aromaticity of the five- and six-membered rings when going from singlet to high spin C60 provide a rationale to understand this regioselectivity change. Experimentally, however, we find that the DA cycloaddition of isoindene to triplet C60 yields the usual [6,6] adduct. Further DFT calculations and computational analysis give an explanation to this unanticipated experimental result by showing the presence of an intersystem crossing close to the formed triplet biradical intermediate.

10.
Phys Chem Chem Phys ; 18(31): 21102-10, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27020701

RESUMEN

Despite the fact that B and Al belong to the same group 13 elements, the B6(2-) cluster prefers the planar D2h geometry, whereas Al6(2-) favours the Oh structure. In this work, we analyse the origin of the relative stability of D2h and Oh forms in these clusters by means of energy decomposition analysis based on the turn-upside-down approach. Our results show that what causes the different trends observed is the orbital interaction term, which combined with the electrostatic component do (Al6(2-) and Ga6(2-)) or do not (B6(2-)) compensate the higher Pauli repulsion of the Oh form. Analysing the orbital interaction term in more detail, we find that the preference of B6(2-) for the planar D2h form has to be attributed to two particular molecular orbital interactions. Our results are in line with a dominant delocalisation force in Al clusters and the preference for more localised bonding in B metal clusters. For mixed clusters, we have found that those with more than two B atoms prefer the planar structure for the same reasons as for B6(2-).

11.
Phys Chem Chem Phys ; 18(17): 11700-6, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-26689394

RESUMEN

It is generally observed that quintessential aromatic compounds have delocalised electronic configurations that are of closed-shells or open-shells half-filled with the same spin electrons. Guided by this property, we search for aromatic octahedral clusters of the type X6(q) (X = Li-C and Be-Si, q = -2 to +4) in (2S+1)A1g electronic states with spin multiplicities ranging from the singlet to the septet. With some exceptions, we find that closed-shells or open-shells half-filled with same spin electron systems have large multicentre indices and negative NICS values that are characteristic patterns of aromatic compounds. Our results confirm the existence of octahedral aromaticity but do not allow us to define a general rule for octahedral aromaticity because the ordering of molecular orbitals does not remain the same for different octahedral clusters.

12.
ACS Omega ; 7(10): 8336-8349, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309486

RESUMEN

The synthesis and properties of a series of unsymmetrical thienopentalenes are explored, including both monoareno and diareno derivatives. For the synthesis of monoareno pentalenes, a carbopalladation cascade reaction between alkynes and gem-dibromoolefins was applied. Diareno pentalene derivatives were accessed via gold-catalyzed cyclization of diynes. Thiophene was fused to pentalene in two different geometries via its 2,3 and 3,4 bonds. 2,3-Fusion resulted in increased antiaromaticity of the pentalene unit compared to the 3,4-fusion both in the monoareno and diareno framework. Monothienopentalenes that contained the destabilizing 2,3-fusion could not be isolated. For diareno derivatives, the aromatic character of the different aryl groups fused to the pentalene was not independent. Destabilizing fusion on one side resulted in alleviated aromaticity on the other side and vice versa. The synthesized molecules were characterized experimentally by 1H NMR and UV-vis spectroscopies, cyclic voltammetry, and X-ray crystallography, and their aromatic character was assessed using magnetic (NICS and ACID) and electronic indices (MCI and FLU).

13.
Chem Sci ; 12(17): 6159-6171, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33996014

RESUMEN

The exact energies of the lowest singlet and triplet excited states in organic chromophores are crucial to their performance in optoelectronic devices. The possibility of utilizing singlet fission to enhance the performance of photovoltaic devices has resulted in a wide demand for tuneable, stable organic chromophores with wide S1-T1 energy gaps (>1 eV). Cibalackrot-type compounds were recently considered to have favorably positioned excited state energies for singlet fission, and they were found to have a degree of aromaticity in the lowest triplet excited state (T1). This work reports on a revised and deepened theoretical analysis taking into account the excited state Hückel-aromatic (instead of Baird-aromatic) as well as diradical characters, with the aim to design new organic chromophores based on this scaffold in a rational way starting from qualitative theory. We demonstrate that the substituent strategy can effectively adjust the spin distribution on the chromophore and thereby manipulate the excited state energy levels. Additionally, the improved understanding of the aromatic characters enables us to demonstrate a feasible design strategy to vary the excited state energy levels by tuning the number and nature of Hückel-aromatic units in the excited state. Finally, our study elucidates the complications and pitfalls of the excited state aromaticity and antiaromaticity concepts, highlighting that quantitative results from quantum chemical calculations of various aromaticity indices must be linked with qualitative theoretical analysis of the character of the excited states.

14.
Chempluschem ; 84(6): 712-721, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31944021

RESUMEN

Compounds with dibenzannelated heterocycles with eight π-electrons are found in a range of applications. These molecules often adopt a bent structure in the ground state (S0 ) but can become planar in the first excited states (S1 and T1 ) because of the cyclically conjugated 4nπ central ring, which fulfils the requirements for excited state aromaticity. We report on a quantum chemical investigation of the aromatic character in the S1 and T1 states of dibenzannelated seven- and six-membered heterocycles with one, two, or three heteroatoms in the 8π-electron ring. These states could have ππ* or nπ* character. We find that compounds with one or two heteroatoms in the central ring have ππ* states as their S1 and T1 states. They are to a significant degree influenced by excited state aromaticity, and their optimal structures are planar or nearly planar. Among the heteroatoms, nitrogen provides for the strongest excited state aromaticity whereas oxygen provides for the weakest, following the established trend of the S0 state. Yet, dibenzannelated seven-membered-ring compounds with N=N bonds have non-aromatic nπ* states with strongly puckered structures as their S1 and T1 states.

15.
Chem Asian J ; 14(10): 1870-1878, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30659757

RESUMEN

Due to the reversal in electron counts for aromaticity and antiaromaticity in the closed-shell singlet state (normally ground state, S0 ) and lowest ππ* triplet state (T1 or T0 ), as given by Hückel's and Baird's rules, respectively, fulvenes are influenced by their substituents in the opposite manner in the T1 and S0 states. This effect is caused by a reversal in the dipole moment when going from S0 to T1 as fulvenes adapt to the difference in electron counts for aromaticity in various states; they are aromatic chameleons. Thus, a substituent pattern that enhances (reduces) fulvene aromaticity in S0 reduces (enhances) aromaticity in T1 , allowing for rationalizations of the triplet state energies (ET ) of substituted fulvenes. Through quantum chemical calculations, we now assess which substituents and which positions on the pentafulvene core are the most powerful for designing compounds with low or inverted ET . As a means to increase the π-electron withdrawing capacity of cyano groups, we found that protonation at the cyano N atoms of 6,6-dicyanopentafulvenes can be a route to on-demand formation of a fulvenium dication with a triplet ground state (T0 ). The five-membered ring of this species is markedly Baird-aromatic, although less than the cyclopentadienyl cation known to have a Baird-aromatic T0 state.

16.
Chem Commun (Camb) ; 50(59): 8073-6, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24923410

RESUMEN

An efficient method for the synthesis of N-arylated pyridazinones from potassium 2-furantrifluoroborate and aryldiazonium salts is described. The reaction was run in water at 0-5 °C in short reaction times and without any catalyst or additive. A mechanistic proposal is made based on the experimental data and DFT calculations.


Asunto(s)
Compuestos Azo/química , Piridazinas/síntesis química , Estructura Molecular , Piridazinas/química , Teoría Cuántica , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA