Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 98(6): 1249-1255, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27236917

RESUMEN

Glutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein. Loss of FRRS1L function attenuates AMPA-mediated currents, implicating chronic abnormalities of glutamatergic neurotransmission in this monogenic neurological disease of childhood.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Hipercinesia/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Transmisión Sináptica/fisiología , Electrofisiología , Femenino , Humanos , Lactante , Masculino , Linaje , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
2.
Genet Med ; 21(3): 736-742, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30237576

RESUMEN

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Asunto(s)
Enfermedad/genética , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Variación Biológica Poblacional/genética , Niño , Preescolar , Diagnóstico , Técnicas y Procedimientos Diagnósticos , Femenino , Pruebas Genéticas/normas , Variación Genética , Genotipo , Herencia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
3.
Clin Genet ; 95(2): 310-319, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30561787

RESUMEN

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Asunto(s)
Árabes , Trastorno Peroxisomal/epidemiología , Trastorno Peroxisomal/etiología , Árabes/genética , Biomarcadores , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Consanguinidad , Costo de Enfermedad , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Trastorno Peroxisomal/diagnóstico , Trastorno Peroxisomal/terapia , Fenotipo , Vigilancia de la Población , Pronóstico
4.
Hum Genet ; 136(8): 921-939, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28600779

RESUMEN

In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most "negative" clinical exome tests are unsolved due to interpretation rather than technical limitations.


Asunto(s)
Exoma , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología , Genoma Humano , Consanguinidad , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Anotación de Secuencia Molecular , Morbilidad , Mutación , Fenotipo , Reproducibilidad de los Resultados , Arabia Saudita/epidemiología , Análisis de Secuencia de ADN
5.
Brain ; 139(Pt 12): 3109-3120, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27742667

RESUMEN

Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.


Asunto(s)
Glutamina/metabolismo , Epilepsias Mioclónicas Progresivas/genética , Neuronas/metabolismo , Canales de Potasio/genética , Potasio/metabolismo , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Transporte Biológico , Preescolar , Consanguinidad , Resultado Fatal , Humanos , Masculino , Oocitos , Linaje , Arabia Saudita , Hermanos , Xenopus laevis
6.
Am J Med Genet A ; 170A(5): 1245-50, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26749485

RESUMEN

Limb reduction malformations are highly heterogeneous in their clinical presentation and so, predicting the underlying mutation on a clinical basis can be challenging. Molecular karyotyping is a powerful genomic tool that has quickly become the mainstay for the study of children with malformation syndromes. We describe three patients with major limb reduction anomalies in whom pathogenic copy number variants were identified on molecular karyotyping. These include a patient with hypoplastic phalanges and absent hallux bilaterally with de novo deletion of 11.9 Mb on 7p21.1-22.1 spanning 63 genes including RAC1, another patient with severe Holt-Oram syndrome and a large de novo deletion 2.2 Mb on 12q24.13-24.21 spanning 20 genes including TBX3 and TBX5, and a third patient with acheiropodia who had a nullizygous deletion of 102 kb on 7q36.3 spanning LMBR1. We discuss the potential of these novel genomic rearrangements to improve our understanding of limb development in humans.


Asunto(s)
Displasia Ectodérmica/genética , Deformidades Congénitas de las Extremidades/genética , Proteínas de la Membrana/genética , Dermatosis del Cuero Cabelludo/congénito , Proteínas de Dominio T Box/genética , Proteína de Unión al GTP rac1/genética , Preescolar , Variaciones en el Número de Copia de ADN/genética , Displasia Ectodérmica/fisiopatología , Humanos , Lactante , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Mutación , Arabia Saudita , Dermatosis del Cuero Cabelludo/genética , Dermatosis del Cuero Cabelludo/fisiopatología
7.
Genet Med ; 17(9): 719-25, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25503496

RESUMEN

PURPOSE: Molecular karyotyping has rapidly become the test of choice in patients with neurocognitive phenotypes, but studies of its clinical utility have largely been limited to outbred populations. In consanguineous populations, single-gene recessive causes of neurocognitive phenotypes are expected to account for a relatively high percentage of cases, thus diminishing the yield of molecular karyotyping. The aim of this study was to test the clinical yield of molecular karyotyping in the highly consanguineous population of Saudi Arabia. METHODS: We have reviewed the data of 584 patients with neurocognitive phenotypes (mainly referred from pediatric neurology clinics), all evaluated by a single clinical geneticist. RESULTS: At least 21% of tested cases had chromosomal aberrations that are likely disease-causing. These changes include both known and novel deletion syndromes. The higher yield of molecular karyotyping in this study as compared with the commonly cited 11% can be explained by our ability to efficiently identify single-gene disorders, thus enriching the samples that underwent molecular karyotyping for de novo chromosomal aberrations. We show that we were able to identify a causal mutation in 37% of cases on a clinical basis with the help of autozygome analysis, thus bypassing the need for molecular karyotyping. CONCLUSION: Our study confirms the clinical utility of molecular karyotyping even in highly consanguineous populations.


Asunto(s)
Trastornos de los Cromosomas/genética , Consanguinidad , Trastornos Neurocognitivos/genética , Adolescente , Adulto , Niño , Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/epidemiología , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Cariotipificación/métodos , Masculino , Trastornos Neurocognitivos/diagnóstico , Trastornos Neurocognitivos/epidemiología , Fenotipo , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Arabia Saudita/epidemiología , Adulto Joven
8.
Am J Med Genet A ; 161A(6): 1207-13, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23633300

RESUMEN

Genetic factors represent an important etiologic group in the causation of intellectual disability. We describe a Saudi Arabian family with closley related parents in which four of six children were affected by a congenital cognitive disturbance. The four individuals (aged 18, 16, 13, and 2 years when last examined) had motor and cognitive delay with seizures in early childhood, and three of the four (sparing only the youngest child) had progressive, severe cognitive decline with spasticity. Two affected children had ocular malformations, and the three older children had progressive visual loss. The youngest had normal globes with good functional vision when last examined but exhibited the oculodigital sign, which may signify a subclinical visual deficit. A potentially deleterious nucleotide change (c.1A>G; p.Met1Val) in the C12orf57 gene was homozygous in all affected individuals, heterozygous in the parents, and absent in an unaffected sibling and >350 normal individuals. This gene has no known function. This family manifests a autosomal recessive syndrome with some phenotypic variability that includes abnormal development of brain and eyes, delayed cognitive and motor milestones, seizures, and a severe cognitive and visual decline that is associated with a homozygous variant in a newly identified gene.


Asunto(s)
Trastornos de los Cromosomas/genética , Trastornos del Conocimiento/genética , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos de la Visión/genética , Adolescente , Sustitución de Aminoácidos , Preescolar , Trastornos de los Cromosomas/diagnóstico por imagen , Mapeo Cromosómico , Trastornos del Conocimiento/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Genotipo , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico por imagen , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Linaje , Mutación Puntual , Radiografía , Arabia Saudita , Análisis de Secuencia de ADN , Hermanos
9.
Nutrients ; 14(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35268042

RESUMEN

BACKGROUND: Cow's milk allergy (CMA) and cow's milk intolerance (CMI) are the major cow's milk disorders observed in infants and young children. This study investigates, for the first time, physician knowledge regarding CMA and CMI prevalence, diagnosis, and management in the Middle East and North Africa (MENA) region. In addition, we explore the role of goat milk-based formula as an alternative in infants suffering from CMI. METHOD: This cross-sectional survey was conducted from December 2020 to February 2021. A convenience sample of 2500 MENA-based physicians received the questionnaire, developed by a working group of pediatric experts. RESULTS: 1868 physicians completed the questionnaire, including pediatric specialists (80.8%), training physicians (0.2%), dermatologists (0.1%), family/general physicians (12.9%), neonatologists (3.6%), neurosurgeons (0.2%), allergy nurse specialists (0.3%), pharmacists (2.1%), and public health workers (0.1%). Differentiation between CMA and CMI was recognized by the majority of respondents (80.7%), for which the majority of respondents (35.4%) identified that the elimination and challenge test was the best test to differentiate CMA from CMI, whereas 30.7% and 5.4% preferred the immunoglobulin E (IgE) test and skin prick test, respectively. In addition, 28.5% of respondents reported that there is no confirmatory test to differentiate CMA from CMI. The majority of respondents (47.3%) reported that amino acid-based formula (AAF)/ extensively hydrolyzed formula (EHF) is the cornerstone for the management of CMA. However, most respondents (33.7%) reported that lactose avoidance was best for the management of CMI. Overall, 65% of the respondents were aware of nutritionally adapted goat's milk formula as an alternative to cow's milk products and 37% would recommend its routine use in infants (≤2 years of age). CONCLUSION: The results of this survey demonstrate that the majority of physicians are aware of the underlying pathophysiology and management of CMA and CMI. However, a significant proportion of physicians do not follow the clinical guidelines concerning CMA/CMI diagnosis and management. Notably, this survey identified that goat's milk formulas may offer a suitable alternative to AAF/EHF in infants with CMI as they contain ß-casein protein which is easily digestible. In addition, goat's milk formulas contain higher levels of oligosaccharides and medium-chained fatty acids compared with standard cow's milk formulas, yet further clinical trials are warranted to support the inclusion of goat's milk formulas in clinical guidelines.


Asunto(s)
Cabras , Leche , África del Norte , Animales , Bovinos , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Medio Oriente/epidemiología , Encuestas y Cuestionarios
10.
Pediatr Neurol ; 134: 78-82, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841715

RESUMEN

BACKGROUND: Hyperekplexia is a rare disorder characterized by exaggerated startle responses to unexpected sensory stimuli, recurrent apneas, and stiffness. Only few studies have been published on this disorder in populations with high rates of consanguinity. METHODS: We retrospectively reviewed Saudi patients with genetically confirmed hereditary hyperekplexia using a standard questionnaire that was sent to nine major referral hospitals in Saudi Arabia. RESULTS: A total of 22 Saudi patients (11 males, 11 females) from 20 unrelated families who had hereditary hyperekplexia were included. Based on molecular studies, they were classified into different subtypes: SLC6A5 variant (12 patients, 54.5%), GLRB variant (seven patients, 31.8%), and GLRA1 variant (three patients, 13.7%). All patients were homozygous for the respective causal variant. The combined carrier frequency of hereditary hyperekplexia for the encountered founder mutations in the Saudi population is 10.9 per 10,000, which translates to a minimum disease burden of 13 patients per 1,000,000. CONCLUSION: Our study provides comprehensive epidemiologic information, prevalence figures, and clinical characteristics of a large cohort of patients with hereditary hyperekplexia.


Asunto(s)
Síndrome de la Persona Rígida , Femenino , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Humanos , Masculino , Mutación , Receptores de Glicina/genética , Reflejo de Sobresalto/genética , Estudios Retrospectivos , Arabia Saudita/epidemiología , Síndrome de la Persona Rígida/epidemiología , Síndrome de la Persona Rígida/genética
11.
Paediatr Int Child Health ; 37(3): 222-226, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27329512

RESUMEN

Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a recently identified auto-immune disorder characterised by severe memory deficit, a decreased level of consciousness, seizures, autonomic dysfunction and movement disorders. Three girls with the disorder are reported; they were aged 4 years, 5 years and 10 months. The 10-month-old infant who is one of the youngest patients reported with anti-NMDAR encephalitis worldwide, had MRI features suggestive of herpes simplex encephalitis (known to trigger anti-NMDAR encephalitis), but CSF PCR for herpes simplex was negative. All the patients presented with seizures, behavioural change, regression of speech, dystonia and choreo-athetosis. Anti-NMDAR antibodies were detected in all patients' sera and cerebrospinal fluid (CSF). Intravenous immunoglobulin, corticosteroids and rituximab were administered at different intervals. Cases 1 and 2 made a full recovery, but case 3 has mild motor and speech delay. Patients who present with encephalopathy, seizures and movement disorders should be tested for anti-NMDAR antibodies in serum and CSF in addition to being screened for herpes simplex encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Autoanticuerpos/sangre , Encéfalo/diagnóstico por imagen , Receptores de N-Metil-D-Aspartato/inmunología , Corticoesteroides/uso terapéutico , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Factores Inmunológicos/uso terapéutico , Lactante , Imagen por Resonancia Magnética , Rituximab/uso terapéutico , Resultado del Tratamiento
12.
Ophthalmic Genet ; 37(3): 276-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26849454

RESUMEN

PURPOSE: We describe the clinical features of a boy with bilateral Duane retraction syndrome (DRS), Duchenne muscular dystrophy (DMD), and other medical problems. METHODS: The child was followed-up for five years; his chart was reviewed, including the results of a muscle biopsy and genetic testing. Multiplex ligation-dependent probe amplification (MLPA) was used to interrogate deletions/duplications in the dystrophin gene. RESULTS: The proband had bilateral DRS with otherwise normal ocular motility; he also had developmental delay, mild mental retardation, and seizures. Clinical diagnosis of DMD included progressive proximal weakness, highly elevated creatine kinase levels, and a muscle biopsy showing significant dystrophic changes including contracted, degenerative, and regenerative fibers, and negative dystrophin immunostaining. MLPA documented duplication of exons 3 and 4 of the dystrophin gene. CONCLUSIONS: This boy is the third patient to be reported with DRS and DMD, the second with bilateral DRS and the only one with other neurologic features. Mutated dystrophin is present in extraocular muscles and in the central nervous system (CNS) in DMD, leaving open the question of whether this co-occurrence is the result of the genetic muscle abnormality, CNS effects caused by dystrophin mutations, or chance.


Asunto(s)
Síndrome de Retracción de Duane/etiología , Distrofia Muscular de Duchenne/complicaciones , Adolescente , Síndrome de Retracción de Duane/diagnóstico , Síndrome de Retracción de Duane/genética , Distrofina/genética , Humanos , Masculino , Reacción en Cadena de la Polimerasa Multiplex , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética
13.
J Neuroimmunol ; 280: 16-20, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25773150

RESUMEN

Polyunsaturated fatty acids (PUFAs) are not only essential for energy production, but they also exhibit a range of immunomodulatory properties that progress through T cell mediated events. Autoimmunity may have a pathogenic role in a subgroup of autistic children. This study is the first to investigate the relationship between serum levels of anti-myelin basic protein (anti-MBP) brain-specific auto-antibodies and reduced plasma levels of PUFAs in autistic children. Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum anti-MBP were measured in 80 autistic children, aged between 4 and 12 years, and 80 healthy-matched children. Autistic patients had significantly lower plasma levels of PUFAs than healthy children. On the other hand, ω6/ω3 ratio (AA/DHA) was significantly higher in autistic patients than healthy children. Low plasma DHA, AA, linolenic and linoleic acids were found in 67.5%, 50%, 40% and 35%, respectively of autistic children. On the other hand, 70% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with increased serum levels of anti-MBP auto-antibodies (75%) had significantly lower plasma DHA (P<0.5) and significantly higher ω6/ω3 ratio (P<0.5) than patients who were seronegative for these antibodies. In conclusions, some autistic children have a significant positive association between reduced levels of plasma DHA and increased serum levels of anti-MBP brain-specific auto-antibodies. However, replication studies of larger samples are recommended to validate whether reduced levels of plasma PUFAs are a mere association or have a role in the induction of the production of anti-MBP in some autistic children.


Asunto(s)
Trastorno Autístico/sangre , Autoanticuerpos/sangre , Ácidos Docosahexaenoicos/sangre , Proteína Básica de Mielina/inmunología , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Niño , Preescolar , Estudios Transversales , Ácidos Grasos Insaturados/sangre , Femenino , Humanos , Masculino , Escalas de Valoración Psiquiátrica
14.
Artículo en Inglés | MEDLINE | ID: mdl-26203402

RESUMEN

BACKGROUND: The etiology of many cases of childhood-onset chorea remains undetermined, although advances in genomics are revealing both new disease-associated genes and variant phenotypes associated with known genes. METHODS: We report a Saudi family with a neurodegenerative course dominated by progressive chorea and dementia in whom we performed homozygosity mapping and whole exome sequencing. RESULTS: We identified a homozygous missense mutation in GM2A within a prominent block of homozygosity. This mutation is predicted to impair protein function. DISCUSSION: Although discovered more than two decades ago, to date, only five patients with this rare form of GM2 gangliosidosis have been reported. The phenotype of previously described GM2A patients has been typified by onset in infancy, profound hypotonia and impaired volitional movement, intractable seizures, hyperacusis, and a macular cherry red spot. Our findings expand the phenotypic spectrum of GM2A mutation-positive gangliosidosis to include generalized chorea without macular findings or hyperacusis and highlight how mutations in neurodegenerative disease genes may present in unexpected ways.

15.
Cell Rep ; 10(2): 148-61, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25558065

RESUMEN

Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Estudios de Asociación Genética , Enfermedades del Sistema Nervioso Central/patología , Mapeo Cromosómico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA