Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Genet ; 98(6): 598-605, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32875576

RESUMEN

Acid ceramidase deficiency is an orphan lysosomal disorder caused by ASAH1 pathogenic variants and presenting with either Farber disease or spinal muscle atrophy with progressive myoclonic epilepsy (SMA-PME). Phenotypic and genotypic features are rarely explored beyond the scope of case reports. Furthermore, the new biomarker C26-Ceramide requires validation in a clinical setting. We evaluated the clinical, biomarker and genetic spectrum of 15 Egyptian children from 14 unrelated families with biallelic pathogenic variants in ASAH1 (12 Farber and 3 SMA-PME). Recruited children were nine females/six males ranging in age at diagnosis from 13 to 118 months. We detected ASAH1 pathogenic variants in all 30 alleles including three novel variants (c.1126A>G (p.Thr376Ala), c.1205G>A (p.Arg402Gln), exon-5-deletion). Both total C26-Ceramide and its trans- isomer showed 100% sensitivity for the detection of ASAH1-related disorders in tested patients. A 10-year-old girl with the novel variant c.1205G>A (p.Arg402Gln) presented with a new peculiar phenotype of PME without muscle atrophy. We expanded the phenotypic spectrum of ASAH1-related disorders and validated the biomarker C26-Ceramide for supporting diagnosis in symptomatic patients.


Asunto(s)
Ceramidasa Ácida/genética , Miopatías Distales/genética , Lipogranulomatosis de Farber/complicaciones , Epilepsias Mioclónicas Progresivas/genética , Mioclonía/congénito , Preescolar , Miopatías Distales/complicaciones , Miopatías Distales/patología , Exones/genética , Lipogranulomatosis de Farber/genética , Lipogranulomatosis de Farber/patología , Femenino , Humanos , Lactante , Masculino , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación/genética , Epilepsias Mioclónicas Progresivas/complicaciones , Epilepsias Mioclónicas Progresivas/patología , Mioclonía/complicaciones , Mioclonía/genética , Mioclonía/patología , Fenotipo
2.
J Cell Physiol ; 233(2): 936-945, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28369825

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; ß Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases.


Asunto(s)
Tejido Adiposo/citología , Neuronas Colinérgicas/fisiología , Neuronas Dopaminérgicas/fisiología , Células Madre Mesenquimatosas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis , Adulto , Linaje de la Célula , Separación Celular , Células Cultivadas , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Medios de Cultivo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Fenotipo , Tubulina (Proteína)/metabolismo
3.
Appl Transl Genom ; 7: 13-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27054080

RESUMEN

Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 µM, 1 µM and 10 µM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data.

4.
Environ Toxicol Pharmacol ; 35(2): 270-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23357603

RESUMEN

A key feature of Parkinson's disease is the dopaminergic neuronal cell loss in the substantia nigra pars compacta. Many triggering pathways have been incriminated in the pathogenesis of this disease including inflammation, oxidative stress, excitotoxicity and apoptosis. Thyroid hormone is an essential agent for the growth and maturation of neurons; moreover, it has variable mechanisms for neuroprotection. So, we tested the efficacy of (L)-thyroxin as a neuroprotectant in rotenone model of Parkinson's disease in rats. Thirty Sprague Dawley rats aged 3 months were divided into 3 equal groups. The first received daily intraperitoneal injections of 0.5% carboxymethyl cellulose (CMC) 3 mL/Kg. The second group received rotenone suspended in 0.5% CMC intraperitoneally at a dose of 3 mg/kg, daily. The third group received the same rotenone regimen subcutaneous l-thyroxine at a dose of 7.5 µg daily. All animals were evaluated regarding locomotor disturbance through blinded investigator who monitored akinesia, catalepsy, tremors and performance in open field test. After 35 days the animals were sacrificed and their brains were immunostained against anti-tyrosine hydroxylase and iba-1. Photomicrographs for coronal sections of the substantia nigra and striatum were taken and analyzed using image J software to evaluate cell count in SNpc and striatal fibers density and number of microglia in the nigrostriatal system. The results were then analyzed statistically. Results showed selective protective effects of thyroxin against rotenone induced neurotoxicity in striatum, however, failed to exert similar protection on SN. Moreover, microglial elevated number in nigrostriatal system that was induced by rotenone injections was diminished selectively in striatum only in the l-thyroxin treated group. One of the possible mechanisms deduced from this work was the selective regulation of microglia in striatal tissues. Thus, this study provides an insight into thyroxin neuroprotection warranting further investigation as therapeutic option for Parkinson's disease patients.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Rotenona/toxicidad , Tiroxina/farmacología , Animales , Catalepsia/inducido químicamente , Catalepsia/tratamiento farmacológico , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Síndromes de Neurotoxicidad/etiología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Temblor/inducido químicamente , Temblor/tratamiento farmacológico , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA