Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(23): 12598-12605, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457154

RESUMEN

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.


Asunto(s)
Antibacterianos/farmacología , Nanoestructuras/química , Estrés Mecánico , Antibacterianos/química , Adhesión Bacteriana , Elasticidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Silicio/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
2.
Chem Soc Rev ; 51(4): 1253-1276, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35107468

RESUMEN

The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.

3.
Chem Rev ; 120(13): 6048-6069, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32364371

RESUMEN

For many years, an extensive array of chemometric methods have provided a platform upon which a quantitative description of environmental conditions can be obtained. Applying chemometric methods to environmental data allows us to identify and describe the interrelations between certain environmental drivers. They also provide an insight into the interrelationships between these drivers and afford us a greater understanding of the potential impact that these drivers can place upon the environment. However, an effective marriage of these two systems has not been performed. Therefore, it is the aim of this review to highlight the advantages of using chemometrics and sensors to identify hidden trends in environmental parameters, which allow the state of the environment to be effectively monitored. Despite the combination of chemometrics and sensors, to capture new developments and applications in the field of environmental sciences, these methods have not been extensively used. Importantly, although different parameters and monitoring procedures are required for different environments (e.g., air, water, soil), they are not distinct, separate entities. Contemporary developments in the use of chemometrics afford us the ability to predict changes in different aspects of the environment using instrumental methods. This review also provides an insight into the prevailing trends and the future of environmental sensing, highlighting that chemometrics can be used to enhance our ability to monitor the environment. This enhanced ability to monitor environmental conditions and to predict trends would be beneficial to government and research agencies in their ability to develop environmental policies and analysis procedures.


Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental/análisis , Política Ambiental
4.
J Chem Inf Model ; 61(9): 4521-4536, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34406000

RESUMEN

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Solventes , Termodinámica
5.
Biochem J ; 477(17): 3219-3235, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32789497

RESUMEN

Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino , Antineoplásicos Inmunológicos , Fragmentos Fab de Inmunoglobulinas , Antígenos del Grupo Sanguíneo de Lewis , Antígeno Lewis X , Simulación del Acoplamiento Molecular , Neoplasias , Oligosacáridos , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/inmunología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/inmunología , Línea Celular Tumoral , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Antígeno Lewis X/química , Antígeno Lewis X/inmunología , Ratones , Neoplasias/química , Neoplasias/inmunología , Oligosacáridos/química , Oligosacáridos/inmunología
6.
Nano Lett ; 20(4): 2660-2666, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32155075

RESUMEN

The orientation-specific immobilization of antibodies onto nanoparticles, to preserve antibody-antigen recognition, is a key challenge in developing targeted nanomedicines. Herein, we report the targeting ability of metal-phenolic network (MPN)-coated gold nanoparticles with surface-physisorbed antibodies against respective antigens. The MPN coatings were self-assembled from metal ions (FeIII, CoII, CuII, NiII, or ZnII) cross-linked with tannic acid. Upon physisorption of antibodies, all particle systems exhibited enhanced association with target antigens, with CoII systems demonstrating more than 2-fold greater association. These systems contained more metal atoms distributed in a way to specifically interact with antibodies, which were investigated by molecular dynamics simulations. A model antibody fragment crystallizable (Fc) region in solution with CoII-tannic acid complexes revealed that the solvent-exposed CoII can directly coordinate to the histidine-rich portion of the Fc region. This one-pot interaction suggests anchoring of the antibody Fc region to the MPN on nanoparticles, allowing for enhanced targeting.


Asunto(s)
Anticuerpos Inmovilizados/química , Cobalto/química , Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Taninos/química , Animales , Línea Celular , Reactivos de Enlaces Cruzados/química , Humanos , Inmunoglobulina G/química , Simulación de Dinámica Molecular
7.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671197

RESUMEN

Gastrointestinal (GIT) diseases have risen globally in recent years, and early detection of the host's gut microbiota, typically through fecal material, has become a crucial component for rapid diagnosis of such diseases. Human fecal material is a complex substance composed of undigested macromolecules and particles, and the processing of such matter is a challenge due to the unstable nature of its products and the complexity of the matrix. The identification of these products can be used as an indication for present and future diseases; however, many researchers focus on one variable or marker looking for specific biomarkers of disease. Therefore, the combination of genomics, transcriptomics, proteomics and metabonomics can give a detailed and complete insight into the gut environment. The proper sample collection, sample preparation and accurate analytical methods play a crucial role in generating precise microbial data and hypotheses in gut microbiome research, as well as multivariate data analysis in determining the gut microbiome functionality in regard to diseases. This review summarizes fecal sample protocols involved in profiling coeliac disease.


Asunto(s)
Enfermedad Celíaca/metabolismo , Heces/química , Tracto Gastrointestinal/metabolismo , Genómica , Enfermedad Celíaca/genética , Heces/microbiología , Microbioma Gastrointestinal , Humanos , MicroARNs/genética , MicroARNs/metabolismo
8.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202224

RESUMEN

Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Pseudomonas aeruginosa/fisiología , Sincrotrones , Análisis de Fourier , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Am Chem Soc ; 141(1): 104-108, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571094

RESUMEN

We report the synthesis of centimeter sized ultrathin GaN and InN. The synthesis relies on the ammonolysis of liquid metal derived two-dimensional (2D) oxide sheets that were squeeze-transferred onto desired substrates. Wurtzite GaN nanosheets featured typical thicknesses of 1.3 nm, an optical bandgap of 3.5 eV and a carrier mobility of 21.5 cm2 V-1 s-1, while the InN featured a thickness of 2.0 nm. The deposited nanosheets were highly crystalline, grew along the (001) direction and featured a thickness of only three unit cells. The method provides a scalable approach for the integration of 2D morphologies of industrially important semiconductors into emerging electronics and optical devices.

10.
Phys Chem Chem Phys ; 21(36): 20219-20224, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31486450

RESUMEN

Flexible crystals are an emerging class of material with unique properties and a range of potential applications. Their relatively recent development means that mechanical characterisation protocols have not yet been widely established. There is a lack of quantitative flexibility measurements, such as the elastic modulus (Young's modulus), reported in the literature. In this work, we investigate amplitude modulated-frequency modulated atomic force microscopy (AM-FM AFM) as a fast, versatile method for measuring the elastic modulus of single flexible crystals. Specifically, the elastic modulus of single crystals of copper(ii) acetylacetonate (Cu(acac)2) was measured. The elastic modulus for Cu(acac)2 was found to be 4.79 ± 0.16 GPa. Importantly, this technique was able to map the variation in mechanical properties over the surface of the material with nanoscale resolution, showing some degree of correlation between surface morphology and elastic modulus. Additionally, the distribution of elastic modulus values can be measured at different locations on the crystal, giving a statistically robust distribution, which cannot be achieved using other methods.

11.
Phys Chem Chem Phys ; 17(40): 26621-8, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26388145

RESUMEN

In situ amplitude modulated-atomic force microscopy (AM-AFM) has been used to probe the nanostructure of mixtures of propylammonium nitrate (PAN) with n-alkanols near a mica surface. PAN is a protic ionic liquid (IL) which has a bicontinuous sponge-like nanostructure of polar and apolar domains in the bulk, which becomes flatter near a solid surface. Mixtures of PAN with 1-butanol, 1-octanol, and 1-dodecanol at 10-70 vol% n-alkanol have been examined, along with each pure n-alkanol, to reveal the effect of composition and n-alkanol chain length. At low concentrations the butanol simply swells the PAN near-surface nanostructure, but at higher concentrations the nanostructure fragments. Octanol and dodecanol first lower the preferred curvature of the PAN near-surface nanostructure because, unlike n-butanol, their alkyl chains are too long to be accommodated alongside the PAN cations. At higher concentrations, octanol and dodecanol self-assemble into n-alkanol rich aggregates in a PAN rich matrix. The concentration at which aggregation first becomes apparent decreases with n-alkanol chain length.

12.
ACS Appl Mater Interfaces ; 16(1): 44-53, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157306

RESUMEN

Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 µg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Saliva , Neoplasias/metabolismo
13.
Mater Today Bio ; 26: 101069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765246

RESUMEN

The urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release. Then, focus on the next-generation bioceramics designed to offer multifunctionality, especially in delivering antibacterial properties independent of traditional antibiotics. A key highlight of this study is the exploration of smart antibacterial bioceramics, marking a revolutionary stride in medical implant technology. The review also aims to guide the ongoing development and clinical adoption of bioceramic materials, focusing on their dual capabilities in promoting bone regeneration and exhibiting antibacterial properties. These next-generation bioceramics represent a paradigm shift in medical implant technology, offering multifunctional benefits that transcend traditional approaches.

14.
Sci Rep ; 14(1): 8587, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615147

RESUMEN

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Lipopolisacáridos , Polisacáridos , Anticuerpos Monoclonales , Lectinas
15.
ACS Appl Mater Interfaces ; 16(1): 332-341, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38111109

RESUMEN

The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.


Asunto(s)
Galio , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Plata/farmacología , Galio/farmacología , Cobre/farmacología , Antibacterianos/farmacología , Meticilina , Bacterias , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
16.
ACS Appl Bio Mater ; 7(1): 344-361, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100088

RESUMEN

Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Nanoestructuras , Adhesión Celular , Titanio/farmacología , Titanio/química , Adhesión Bacteriana , Nanoestructuras/química , Antiinfecciosos/farmacología , Elasticidad
17.
J Phys Chem B ; 128(10): 2504-2515, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38416751

RESUMEN

Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.


Asunto(s)
Líquidos Iónicos , Animales , Líquidos Iónicos/toxicidad , Solventes , Aniones , Iones , Criopreservación , Mamíferos
18.
Adv Mater ; 36(30): e2403885, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739417

RESUMEN

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

19.
ACS Appl Bio Mater ; 7(3): 1429-1434, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38445589

RESUMEN

Gel-based wound dressings have gained popularity within the healthcare industry for the prevention and treatment of bacterial and fungal infections. Gels based on deep eutectic solvents (DESs), known as eutectogels, provide a promising alternative to hydrogels as they are non-volatile and highly tunable and can solubilize therapeutic agents, including those insoluble in hydrogels. A choline chloride:glycerol-cellulose eutectogel was loaded with numerous antimicrobial agents including silver nanoparticles, black phosphorus nanoflakes, and commercially available pharmaceuticals (octenidine dihydrochloride, tetracycline hydrochloride, and fluconazole). The eutectogels caused >97% growth reduction in Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria and the fungal species Candida albicans.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Solventes , Disolventes Eutécticos Profundos , Plata/farmacología , Antiinfecciosos/farmacología , Hidrogeles
20.
Adv Sci (Weinh) ; 11(26): e2400147, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704677

RESUMEN

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA