Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153174

RESUMEN

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Programas Informáticos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Homocigoto , Enfermedades Raras/genética
2.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582790

RESUMEN

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Asunto(s)
Genómica/métodos , Mutación , Trastornos del Neurodesarrollo/epidemiología , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Prevalencia , Turquía/epidemiología , Secuenciación del Exoma , Adulto Joven
3.
Am J Med Genet A ; : e63785, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860472

RESUMEN

Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondylo-epi-metaphyseal dysplasias with identical radiological and clinical findings. DMC and SMC type 1 are allelic disorders caused by homozygous or compound heterozygous variants in DYM, while biallelic causative variants in RAB33B lead to SMC type 2. The terminology "skeletal golgipathies" has been recently used to describe these conditions, highlighting the pivotal role of these two genes in the organization and intracellular trafficking of the Golgi apparatus. In this study, we investigated 17 affected individuals (8 males, 9 females) from 10 unrelated consanguineous families, 10 diagnosed with DMC and seven with SMC type 2. The mean age at diagnosis was 9.61 ± 9.72 years, ranging from 20 months to 34 years, and the average height at diagnosis was 92.85 ± 15.50 cm. All patients exhibited variable degrees of short trunk with a barrel chest, protruding abdomen, hyperlordosis, and decreased joint mobility. A total of nine different biallelic variants were identified, with six being located in the DYM gene and the remaining three detected in RAB33B. Notably, five variants were classified as novel, four in the DYM gene and one in the RAB33B gene. This study aims to comprehensively assess clinical, radiological, and molecular findings along with the long-term follow-up findings in 17 patients with DMC and SMC type 2. Our results suggest that clinical symptoms of the disorder typically appear from infancy to early childhood. The central notches of the vertebral bodies were identified as early as 20 months and tended to become rectangular, particularly around 15 years of age. Pseudoepiphysis was observed in five patients; we believe this finding should be taken into consideration when evaluating hand radiographs in clinical assessments. Furthermore, our research contributes to an enhanced understanding of clinical and molecular aspects in these rare "skeletal golgipathies," expanding the mutational spectrum and offering insights into long-term disease outcomes.

4.
J Med Genet ; 59(4): 377-384, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33737400

RESUMEN

INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of ß-galactosidase (ß-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management.


Asunto(s)
Gangliosidosis GM1 , Mucopolisacaridosis IV , Femenino , Gangliósido G(M1) , Gangliosidosis GM1/genética , Humanos , Mucopolisacaridosis IV/genética , Mutación , Embarazo , beta-Galactosidasa/genética
5.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230720

RESUMEN

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Asunto(s)
Artrogriposis/genética , Artrogriposis/patología , Variaciones en el Número de Copia de ADN , Marcadores Genéticos , Genómica/métodos , Herencia Multifactorial/genética , Mutación , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Conectina/genética , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Linaje , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Secuenciación del Exoma , Adulto Joven
7.
Mol Vis ; 28: 57-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693420

RESUMEN

Purpose: To investigate the molecular basis of recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia in two consanguineous families. Methods: Conventional autozygosity mapping was performed using single nucleotide polymorphism (SNP) microarrays. Whole-exome sequencing was completed on genomic DNA from one affected member of each family. Exome sequence data were also used for homozygosity mapping and copy number variation analysis. PCR and Sanger sequencing were used to confirm the identification of mutations and to screen further patients. Evolutionary conservation of protein sequences was assessed using CLUSTALW, and protein structures were modeled using PyMol. Results: In family MEP68, a novel homozygous nucleotide substitution in SIX6 was found, c.547G>C, that converts the evolutionarily conserved aspartic acid residue at the 183rd amino acid in the protein to a histidine, p.(Asp183His). This residue mapped to the third helix of the DNA-binding homeobox domain in SIX6, which interacts with the major groove of double-stranded DNA. This interaction is likely to be disrupted by the mutation. In family F1332, a novel homozygous 1034 bp deletion that encompasses the first exon of SIX6 was identified, chr14:g.60975890_60976923del. Both mutations segregated with the disease phenotype as expected for a recessive condition and were absent from publicly available variant databases. Conclusions: Our findings expand the mutation spectrum in this form of inherited eye disease and confirm that homozygous human SIX6 mutations cause a developmental spectrum of ocular phenotypes that includes not only the previously described features of microphthalmia, coloboma, and congenital cataract but also corneal abnormalities.


Asunto(s)
Catarata , Coloboma , Enfermedades de la Córnea , Anomalías del Ojo , Microftalmía , Catarata/congénito , Catarata/genética , Coloboma/genética , Enfermedades de la Córnea/genética , ADN/genética , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Anomalías del Ojo/genética , Proteínas de Homeodominio/genética , Humanos , Microftalmía/genética , Mutación , Linaje , Fenotipo , Transactivadores/genética
8.
Clin Genet ; 101(5-6): 559-564, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218564

RESUMEN

Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency, which should be considered as one of the most important phenotypic characteristics of BS.


Asunto(s)
Síndrome de Bloom , Microcefalia , Síndrome de Bloom/genética , Proteínas de Unión al ADN/genética , Genotipo , Humanos , Microcefalia/genética , Fenotipo , RecQ Helicasas/genética
9.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34159400

RESUMEN

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Asunto(s)
Heterogeneidad Genética , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Mutación , Factores de Transcripción/genética , Enzimas Activadoras de Ubiquitina/genética , Secuencia de Bases , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Expresión Génica , Pruebas Genéticas , Humanos , Lactante , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/patología , Masculino , Linaje , Factores de Transcripción/deficiencia , Enzimas Activadoras de Ubiquitina/deficiencia , Secuenciación Completa del Genoma
10.
Am J Hum Genet ; 103(1): 115-124, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29887215

RESUMEN

MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 bp frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.Gln8Leufs∗86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans.


Asunto(s)
Mutación/genética , Factor 5 Regulador Miogénico/genética , Oftalmoplejía/genética , Costillas/anomalías , Columna Vertebral/anomalías , Alelos , Secuencia de Aminoácidos , Canal Anal/anomalías , Animales , Proteínas de Unión al ADN/genética , Esófago/anomalías , Exones/genética , Femenino , Cardiopatías Congénitas , Humanos , Riñón/anomalías , Deformidades Congénitas de las Extremidades , Masculino , Ratones Noqueados , Proteína MioD/genética , Fenotipo , Alineación de Secuencia , Tráquea/anomalías , Secuenciación Completa del Genoma/métodos
11.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057030

RESUMEN

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

12.
Am J Med Genet A ; 185(8): 2325-2334, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33951304

RESUMEN

Warburg-Micro syndrome (WARBM) is a rare autosomal recessively inherited neuro-ophthalmologic syndrome. Although WARBM shows genetic heterogeneity, the pathogenic variants in RAB3GAP1 were the most common cause of WARBM. In this study, we aimed to evaluate the detailed clinical and dysmorphic features of seven WARBM1 patients and overview the variant spectrum of RAB3GAP1 in comparison with the literature who were referred due to congenital cataracts. A previously reported homozygous variant (c.2187_2188delGAinsCT) was identified in three of these patients, while the other four had three novel variants (c.251_258delAGAA, c.2606+1G>A, and c.2861_2862dupGC). Congenital cataract and corpus callosum hypo/agenesia are pathognomonic for WARBM, which could be distinguished from other similar syndromes with additional typical dysmorphic facial features. Although there is no known phenotype and genotype correlation in any type of WARBM, RAB3GAP1 gene analysis should be previously requested as the first step of genetic diagnosis in clinically suspicious patients when it is not possible to request a multi-gene panel.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Catarata/congénito , Catarata/diagnóstico , Catarata/genética , Córnea/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Alelos , Catarata/terapia , Preescolar , Técnicas de Diagnóstico Oftalmológico , Facies , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación , Fenotipo , Proteínas de Unión al GTP rab3/genética
14.
Am J Hum Genet ; 101(1): 149-156, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686854

RESUMEN

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis that develops as a slowly progressive, benign, localized or generalized enlargement of keratinized gingiva. HGF is a genetically heterogeneous disorder and can be transmitted either as an autosomal-dominant or autosomal-recessive trait or appear sporadically. To date, four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15) have been mapped to autosomes and one gene (SOS1) has been associated with the HGF trait observed to segregate in a dominant inheritance pattern. Here we report 11 individuals with HGF from three unrelated families. Whole-exome sequencing (WES) revealed three different truncating mutations including two frameshifts and one nonsense variant in RE1-silencing transcription factor (REST) in the probands from all families and further genetic and genomic analyses confirmed the WES-identified findings. REST is a transcriptional repressor that is expressed throughout the body; it has different roles in different cellular contexts, such as oncogenic and tumor-suppressor functions and hematopoietic and cardiac differentiation. Here we show the consequences of germline final-exon-truncating mutations in REST for organismal development and the association with the HGF phenotype.


Asunto(s)
Exones/genética , Fibromatosis Gingival/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Proteínas Represoras/genética , Adolescente , Secuencia de Bases , Segregación Cromosómica/genética , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
16.
Genet Med ; 22(3): 511-523, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31680123

RESUMEN

PURPOSE: Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood. METHODS: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA). RESULTS: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant in TNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis. CONCLUSION: Our analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1, IQSEC3 and RYR3. Of those, IQSEC3, and RYR3 had been proposed as neuromuscular disease-associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.


Asunto(s)
Enfermedades Fetales/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Unión al ARN/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Transactivadores/genética , Adolescente , Adulto , Artrogriposis/genética , Artrogriposis/patología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Enfermedades Fetales/patología , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Adulto Joven
17.
Hum Mutat ; 40(8): 1084-1100, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31228227

RESUMEN

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.


Asunto(s)
Acetiltransferasas/genética , Mucopolisacaridosis III/genética , Mutación , Acetiltransferasas/química , Argelia , Animales , Azerbaiyán , Brasil , Células COS , Canadá , Chlorocebus aethiops , Colombia , Evolución Molecular , Femenino , Efecto Fundador , Haplotipos , Humanos , Irán , Masculino , Países Bajos , Linaje , Filogeografía , Polonia , Pliegue de Proteína
18.
Genet Med ; 21(6): 1295-1307, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30349098

RESUMEN

PURPOSE: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. METHODS: Clinicians entered clinical data in an extensive web-based survey. RESULTS: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. CONCLUSION: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Proteínas Cromosómicas no Histona/genética , Exoma , Cara/anomalías , Femenino , Estudios de Asociación Genética/métodos , Variación Genética/genética , Deformidades Congénitas de la Mano/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Micrognatismo/genética , Persona de Mediana Edad , Mutación , Cuello/anomalías , Penetrancia
20.
Am J Med Genet A ; 179(6): 908-914, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30896082

RESUMEN

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder, mainly characterized by bone fragility and low bone mass. Defects in the type I procollagen-encoding genes account for the majority of OI, but increasingly more rare autosomal recessive (AR) forms are being identified, which are caused by defects in genes involved in collagen metabolism, bone mineralization, or osteoblast differentiation. Bi-allelic mutations in WNT1 have been associated with a rare form of AR OI, characterized by severe osteoporosis, vertebral compression, scoliosis, fractures, short stature, and variable neurological problems. Heterozygous WNT1 mutations have been linked to autosomal dominant early-onset osteoporosis. In this study, we describe the clinical and molecular findings in 10 new patients with AR WNT1-related OI. Thorough revision of the clinical symptoms of these 10 novel patients and previously published AR WNT1 OI cases highlight ptosis as a unique hallmark in the diagnosis of this OI subtype.


Asunto(s)
Blefaroptosis/genética , Genes Recesivos , Estudios de Asociación Genética , Mutación , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Proteína Wnt1/genética , Alelos , Niño , Preescolar , Análisis Mutacional de ADN , Facies , Femenino , Genotipo , Humanos , Lactante , Masculino , Linaje , Fenotipo , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA