Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(11): e1010346, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346800

RESUMEN

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway.


Asunto(s)
Caenorhabditis elegans , Cannabinoides , Animales , Caenorhabditis elegans/genética , Colesterol/genética , Esteroles , Insulina
2.
Pharmacol Res ; 190: 106735, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931539

RESUMEN

Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Colinérgicos/metabolismo , Neuronas/metabolismo , Transmisión Sináptica
3.
Proc Natl Acad Sci U S A ; 117(21): 11811-11819, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393641

RESUMEN

"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.


Asunto(s)
Envejecimiento/fisiología , Cóclea , Células Ciliadas Auditivas Externas , Presbiacusia , Complejo Olivar Superior , Animales , Cóclea/fisiología , Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Retroalimentación Fisiológica/fisiología , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas Externas/fisiología , Ratones , Emisiones Otoacústicas Espontáneas/fisiología , Presbiacusia/fisiopatología , Presbiacusia/prevención & control , Complejo Olivar Superior/citología , Complejo Olivar Superior/fisiología
4.
J Neurosci ; 41(4): 594-612, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33303678

RESUMEN

Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.


Asunto(s)
Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Receptores Purinérgicos/fisiología , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/fisiología , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , Femenino , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas Internas/fisiología , Colículos Inferiores/fisiología , Células Laberínticas de Soporte/fisiología , Masculino , Ratones , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Nervioso Parasimpático/fisiología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y1/fisiología , Retina/fisiología , Ganglio Espiral de la Cóclea/fisiología
5.
J Neurosci ; 41(1): 47-60, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33203744

RESUMEN

The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.


Asunto(s)
Vías Eferentes/fisiología , Sistema de la Línea Lateral/fisiología , Sistema Nervioso Parasimpático/fisiología , Sinapsis/fisiología , Animales , Bungarotoxinas/farmacología , Señalización del Calcio/efectos de los fármacos , Regulación de la Expresión Génica , Células Ciliadas Auditivas/fisiología , Antagonistas Nicotínicos/farmacología , Oocitos , Estimulación Física , Receptores Nicotínicos/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Estricnina/farmacología , Xenopus , Pez Cebra
6.
Annu Rev Pharmacol Toxicol ; 59: 291-313, 2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044727

RESUMEN

Tinnitus is a highly prevalent condition that is associated with hearing loss in most cases. In the absence of external stimuli, phantom perceptions of sounds emerge from alterations in neuronal activity within central auditory and nonauditory structures. Pioneering studies using lidocaine revealed that tinnitus is susceptible to pharmacological interventions. However, lidocaine is not effective in all patients, and no other drug has been identified with clear efficacy for the long-term treatment of tinnitus. In this review, we present recent advances in tinnitus research, including more detailed knowledge of its pathophysiology and involved neurotransmitter systems. Moreover, we summarize results from animal and clinical treatment studies as well as from studies that identified tinnitus as a side effect of pharmacological treatments. Finally, we focus on challenges in the development of pharmacological compounds for the treatment of tinnitus, namely the limitations of available animal models and of standardized clinical research methodologies.


Asunto(s)
Acúfeno/tratamiento farmacológico , Animales , Humanos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/metabolismo , Acúfeno/metabolismo , Acúfeno/patología
7.
J Neurosci ; 40(25): 4842-4857, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32430293

RESUMEN

The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers. The functional characteristics of the MOC-OHC synapse during maturation were assessed by electrophysiological and pharmacological methods in mouse organs of Corti at postnatal day 11 (P11)-P13, hearing onset in altricial rodents, and at P20-P22 when the OHCs are morphologically and functionally mature. Synaptic currents were recorded in whole-cell voltage-clamped OHCs while electrically stimulating the MOC fibers. A progressive increase in the number of functional MOC-OHC synapses, as well as in their strength and efficacy, was observed between P11-13 and P20-22. At hearing onset, the MOC-OHC synapse presented facilitation during MOC fibers high-frequency stimulation that disappeared at mature stages. In addition, important changes were found in the VGCC that are coupled to transmitter release. Ca2+ flowing in through L-type VGCCs contribute to trigger ACh release together with P/Q- and R-type VGCCs at P11-P13, but not at P20-P22. Interestingly, N-type VGCCs were found to be involved in this process at P20-P22, but not at hearing onset. Moreover, the degree of compartmentalization of calcium channels with respect to BK channels and presynaptic release components significantly increased from P11-P13 to P20-P22. These results suggest that the MOC-OHC synapse is immature at the onset of hearing.SIGNIFICANCE STATEMENT The functional expression of both VGCCs and BK channels, as well as their localization with respect to the presynaptic components involved in transmitter release, are key elements in determining synaptic efficacy. In this work, we show dynamic changes in the expression of VGCCs and Ca2+-dependent BK K+ channels coupled to ACh release at the MOC-OHC synapse and their shift in compartmentalization during postnatal maturation. These processes most likely set the short-term plasticity pattern and reliability of the MOC-OHC synapse on high-frequency activity.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Órgano Espiral/crecimiento & desarrollo , Sinapsis/fisiología , Animales , Canales de Calcio/metabolismo , Femenino , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas Eferentes/fisiología , Órgano Espiral/fisiología
8.
Mol Biol Evol ; 37(4): 1070-1089, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31821508

RESUMEN

The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels with distinct roles in synaptic transmission at the neuromuscular junction, the central and peripheral nervous system, and the inner ear. Remarkably, the complement of nAChR subunits has been highly conserved along vertebrate phylogeny. To ask whether the different subtypes of receptors underwent different evolutionary trajectories, we performed a comprehensive analysis of vertebrate nAChRs coding sequences, mouse single-cell expression patterns, and comparative functional properties of receptors from three representative tetrapod species. We found significant differences between hair cell and neuronal receptors that were most likely shaped by the differences in coexpression patterns and coassembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater coexpression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow coexpression pattern, and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.


Asunto(s)
Evolución Molecular , Receptores Nicotínicos/genética , Vertebrados/genética , Animales , Neuronas Colinérgicas/metabolismo , Células Ciliadas Auditivas/metabolismo , Ratones , Ratas , Receptores Nicotínicos/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(9): E2095-E2104, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29439202

RESUMEN

During a critical developmental period, cochlear inner hair cells (IHCs) exhibit sensory-independent activity, featuring action potentials in which Ca2+ ions play a fundamental role in driving both spiking and glutamate release onto synapses with afferent auditory neurons. This spontaneous activity is controlled by a cholinergic input to the IHC, activating a specialized nicotinic receptor with high Ca2+ permeability, and coupled to the activation of hyperpolarizing SK channels. The mechanisms underlying distinct excitatory and inhibitory Ca2+ roles within a small, compact IHC are unknown. Making use of Ca2+ imaging, afferent auditory bouton recordings, and electron microscopy, the present work shows that unusually high intracellular Ca2+ buffering and "subsynaptic" cisterns provide efficient compartmentalization and tight control of cholinergic Ca2+ signals. Thus, synaptic efferent Ca2+ spillover and cross-talk are prevented, and the cholinergic input preserves its inhibitory signature to ensure normal development of the auditory system.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cóclea/fisiología , Células Ciliadas Auditivas Internas/citología , Sinapsis/fisiología , Acetilcolina/farmacología , Potenciales de Acción , Animales , Vías Auditivas/fisiología , Estimulación Eléctrica , Femenino , Ácido Glutámico/metabolismo , Audición , Masculino , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/fisiología , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 115(13): 3476-3481, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531031

RESUMEN

Excessive dopamine neurotransmission underlies psychotic episodes as observed in patients with some types of bipolar disorder and schizophrenia. The dopaminergic hypothesis was postulated after the finding that antipsychotics were effective to halt increased dopamine tone. However, there is little evidence for dysfunction within the dopaminergic system itself. Alternatively, it has been proposed that excessive afferent activity onto ventral tegmental area dopaminergic neurons, particularly from the ventral hippocampus, increase dopamine neurotransmission, leading to psychosis. Here, we show that selective dopamine D2 receptor deletion from parvalbumin interneurons in mouse causes an impaired inhibitory activity in the ventral hippocampus and a dysregulated dopaminergic system. Conditional mutant animals show adult onset of schizophrenia-like behaviors and molecular, cellular, and physiological endophenotypes as previously described from postmortem brain studies of patients with schizophrenia. Our findings show that dopamine D2 receptor expression on parvalbumin interneurons is required to modulate and limit pyramidal neuron activity, which may prevent the dysregulation of the dopaminergic system.


Asunto(s)
Antipsicóticos/farmacología , Resistencia a Medicamentos , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Receptores de Dopamina D2/fisiología , Esquizofrenia/etiología , Animales , Masculino , Ratones , Ratones Noqueados , Parvalbúminas/genética , Fenotipo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Transmisión Sináptica
11.
J Neurosci ; 39(18): 3360-3375, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30755493

RESUMEN

In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the CNS. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day 0 (P0) to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins. To evaluate whether there are associated changes in the properties of ACh release during this period, we used a cochlear preparation from mice of either sex at P4, P6-P7, and P9-P11 and monitored transmitter release from MOC terminals in voltage-clamped IHCs in the whole-cell configuration. The quantum content increased 5.6× from P4 to P9-P11 due to increases in the size and replenishment rate of the readily releasable pool of synaptic vesicles without changes in their probability of release or quantum size. This strengthening in transmission was accompanied by changes in short-term plasticity properties, which switched from facilitation at P4 to depression at P9-P11. We have previously shown that at P9-P11, ACh release is supported by P/Q- and N-type voltage-gated calcium channels (VGCCs) and negatively regulated by BK potassium channels activated by Ca2+ influx through L-type VGCCs. We now show that at P4 and P6-P7, release is mediated by P/Q-, R- and L-type VGCCs. Interestingly, L-type VGCCs have a dual role: they both support release and fuel BK channels, suggesting that at immature stages presynaptic proteins involved in release are less compartmentalized.SIGNIFICANCE STATEMENT During postnatal development before the onset of hearing, cochlear inner hair cells (IHCs) present spontaneous Ca2+ action potentials that release glutamate at the first auditory synapse in the absence of sound stimulation. The IHC Ca2+ action potential frequency pattern, which is crucial for the correct establishment and function of the auditory system, is regulated by the efferent medial olivocochlear (MOC) system that transiently innervates IHCs during this period. We show here that developmental changes in synaptic strength and synaptic plasticity properties at the MOC-IHC synapse upon MOC fiber activation at different frequencies might be crucial for tightly shaping the pattern of afferent activity during this critical period.


Asunto(s)
Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas Internas/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Acetilcolina/metabolismo , Animales , Cóclea/metabolismo , Femenino , Potenciales Postsinápticos Inhibidores , Masculino , Ratones Endogámicos BALB C , Plasticidad Neuronal
12.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31217330

RESUMEN

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Asunto(s)
Cóclea/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Núcleo Olivar/fisiología , Potenciales Sinápticos , Cuerpo Trapezoide/fisiología , Animales , Percepción Auditiva , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Femenino , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Masculino , Ratones , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Núcleo Olivar/crecimiento & desarrollo , Núcleo Olivar/metabolismo , Receptores Nicotínicos/genética , Cuerpo Trapezoide/crecimiento & desarrollo , Cuerpo Trapezoide/metabolismo
13.
Mol Biol Evol ; 36(8): 1653-1670, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31137036

RESUMEN

The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.


Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/genética , Oído Interno/metabolismo , Proteínas con Dominio LIM/genética , Mamíferos/genética , Proteínas de Microfilamentos/genética , Selección Genética , Adaptación Biológica , Animales , Ratones , Transcriptoma
14.
Nat Rev Neurosci ; 16(10): 632-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26373470

RESUMEN

Tinnitus is the perception of phantom sound in the absence of a corresponding external source. It is a highly prevalent disorder, and most cases are caused by cochlear injury that leads to peripheral deafferentation, which results in adaptive changes in the CNS. In this article we critically assess the recent neuroimaging studies in individuals with tinnitus that suggest that the disorder is accompanied by functional and structural brain abnormalities in distributed auditory and non-auditory brain regions. Moreover, we consider how the identification of the neuronal mechanisms underlying the different forms of tinnitus would benefit from larger studies, replication and comprehensive clinical assessment of patients.


Asunto(s)
Neuroimagen/métodos , Acúfeno/patología , Animales , Umbral Auditivo , Modelos Animales de Enfermedad , Pérdida Auditiva/etiología , Humanos , Acúfeno/complicaciones , Acúfeno/epidemiología
15.
Proc Natl Acad Sci U S A ; 114(8): 2054-2059, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28179572

RESUMEN

The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the ßV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-ßV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin ßV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.


Asunto(s)
Movimiento Celular/fisiología , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Mamíferos/fisiología , Espectrina/genética , Actinas/metabolismo , Adaptación Biológica/genética , Animales , Aves/fisiología , Simulación por Computador , Fenómenos Electrofisiológicos , Células HeLa , Audición/fisiología , Humanos , Ratones , Mutación , Filogenia , Espectrina/metabolismo , Xenopus laevis/fisiología
16.
J Neurosci ; 38(34): 7440-7451, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30030403

RESUMEN

Cochlear synaptopathy produced by exposure to noise levels that cause only transient auditory threshold elevations is a condition that affects many people and is believed to contribute to poor speech discrimination in noisy environments. These functional deficits in hearing, without changes in sensitivity, have been called hidden hearing loss (HHL). It has been proposed that activity of the medial olivocochlear (MOC) system can ameliorate acoustic trauma effects. Here we explore the role of the MOC system in HHL by comparing the performance of two different mouse models: an α9 nicotinic receptor subunit knock-out (KO; Chrna9 KO), which lacks cholinergic transmission between efferent neurons and hair cells; and a gain-of-function knock-in (KI; Chrna9L9'T KI) carrying an α9 point mutation that leads to enhanced cholinergic activity. Animals of either sex were exposed to sound pressure levels that in wild-type produced transient cochlear threshold shifts and a decrease in neural response amplitudes, together with the loss of ribbon synapses, which is indicative of cochlear synaptopathy. Moreover, a reduction in the number of efferent contacts to outer hair cells was observed. In Chrna9 KO ears, noise exposure produced permanent auditory threshold elevations together with cochlear synaptopathy. In contrast, the Chrna9L9'T KI was completely resistant to the same acoustic exposure protocol. These results show a positive correlation between the degree of HHL prevention and the level of cholinergic activity. Notably, enhancement of the MOC feedback promoted new afferent synapse formation, suggesting that it can trigger cellular and molecular mechanisms to protect and/or repair the inner ear sensory epithelium.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of a variety of perceptual disabilities, including speech-in-noise difficulties, tinnitus, and hyperacusis. Here we show that exposure to noise levels that do not cause permanent threshold elevations or hair cell death can produce a loss of cochlear nerve synapses to inner hair cells as well as degeneration of medial olivocochlear (MOC) terminals contacting the outer hair cells. Enhancement of the MOC reflex can prevent both types of neuropathy, highlighting the potential use of drugs that increase α9α10 nicotinic cholinergic receptor activity as a pharmacotherapeutic strategy to avoid hidden hearing loss.


Asunto(s)
Umbral Auditivo/fisiología , Cóclea/fisiopatología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Núcleo Olivar/fisiopatología , Receptores Nicotínicos/fisiología , Animales , Vías Auditivas/fisiopatología , Fibras Colinérgicas/fisiología , Vías Eferentes/fisiopatología , Retroalimentación Fisiológica , Mutación con Ganancia de Función , Células Ciliadas Auditivas Externas/fisiología , Pérdida Auditiva Provocada por Ruido/etiología , Humanos , Ratones , Regeneración Nerviosa , Ruido/efectos adversos , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/genética , Sinapsis/fisiología
17.
J Neurosci ; 38(16): 3939-3954, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29572431

RESUMEN

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOC activity and short-term facilitation at the MOC-OHC synapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α9α10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+ signals. Interestingly, MOC-OHC synapses of L9'T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.SIGNIFICANCE STATEMENT Plasticity can involve reciprocal signaling across chemical synapses. An opportunity to study this phenomenon occurs in the mammalian cochlea whose sensitivity is regulated by efferent olivocochlear neurons. These release acetylcholine to inhibit sensory hair cells. A point mutation in the hair cell's acetylcholine receptor that leads to increased gating of the receptor greatly elongates IPSCs. Interestingly, efferent terminals from mutant mice present a reduced resting release probability. However, upon high-frequency stimulation transmitter release facilitates strongly to produce stronger and far longer-lasting inhibition of cochlear function. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define plasticity mechanisms in cholinergic synapses other than the highly studied neuromuscular junction.


Asunto(s)
Mutación con Ganancia de Función , Células Ciliadas Auditivas/metabolismo , Plasticidad Neuronal , Receptores Nicotínicos/genética , Animales , Señalización del Calcio , Retroalimentación Fisiológica , Femenino , Células Ciliadas Auditivas/fisiología , Potenciales Postsinápticos Inhibidores , Activación del Canal Iónico , Masculino , Ratones , Neuronas Eferentes/metabolismo , Neuronas Eferentes/fisiología , Receptores Nicotínicos/metabolismo
18.
Learn Mem ; 24(6): 231-244, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28507032

RESUMEN

The absence of α2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of α2* nAChRs (Chrna2L9'S/L9'S and Chrna2KO) influence hippocampus-dependent learning and memory and CA1 synaptic plasticity. We substituted a serine for a leucine (L9'S) in the α2 subunit (encoded by the Chrna2 gene) to make a hypersensitive nAChR. Using a dorsal hippocampus-dependent task of preexposure-dependent contextual fear conditioning, adolescent hypersensitive Chrna2L9'S/L9'S male mice exhibited impaired learning and memory. The deficit was rescued by low-dose nicotine exposure. Electrophysiological studies demonstrated that hypersensitive α2 nAChRs potentiate acetylcholine-induced ion channel flux in oocytes and acute nicotine-induced facilitation of dorsal/intermediate CA1 hippocampal long-term potentiation in Chrna2L9'S/L9'S mice. Adolescent male mice null for the α2 nAChR subunit exhibited a baseline deficit in learning that was not reversed by an acute dose of nicotine. These effects were not influenced by locomotor, sensory or anxiety-related measures. Our results demonstrated that α2* nAChRs influenced hippocampus-dependent learning and memory, as well as nicotine-facilitated CA1 hippocampal synaptic plasticity.


Asunto(s)
Hipocampo/fisiología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/patología , Receptores Nicotínicos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Ansiedad/genética , Ansiedad/patología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Discapacidades para el Aprendizaje/tratamiento farmacológico , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nicotina/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Oocitos , Receptores Nicotínicos/genética , Conducta Estereotipada/efectos de los fármacos , Conducta Estereotipada/fisiología , Xenopus laevis
19.
J Neurosci ; 36(27): 7198-209, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383594

RESUMEN

UNLABELLED: During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. SIGNIFICANCE STATEMENT: The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we studied the behavioral consequences of adding different types of auditory distractors in a visual selective attention task in wild-type and α-9 nicotinic receptor knock-out (KO) mice. We demonstrate that KO mice perform poorly in the selective attention paradigm and that an intact medial olivocochlear transmission aids in ignoring auditory distractors during attention.


Asunto(s)
Atención/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Conducta de Elección/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Receptores Nicotínicos/deficiencia , Estimulación Acústica , Análisis de Varianza , Animales , Nervio Coclear/fisiología , Electroencefalografía , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Masculino , Ratones , Ratones Noqueados , Estimulación Luminosa , Receptores Nicotínicos/genética , Factores de Tiempo
20.
Mol Pharmacol ; 91(3): 250-262, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28069778

RESUMEN

Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and ß subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a ß subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.


Asunto(s)
Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Pollos , Simulación del Acoplamiento Molecular , Mutación/genética , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Ratas , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA