Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Gen Virol ; 104(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432877

RESUMEN

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses. A library of 18 000 small molecules was screened for PDE12 inhibitor activity using a fluorescent probe specific for PDE12. The lead compounds (CO-17 or CO-63) were tested in cell-based antiviral assays using encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), dengue virus (DENV), West Nile virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro. Cross reactivity of PDE12 inhibitors with other PDEs and in vivo toxicity were measured. In EMCV assays, CO-17 potentiated the effect of IFNα by 3 log10. The compounds were selective for PDE12 when tested against a panel of other PDEs and non-toxic at up to 42 mg kg-1 in rats in vivo. Thus, we have identified PDE12 inhibitors (CO-17 and CO-63), and established the principle that inhibitors of PDE12 have antiviral properties. Early studies suggest these PDE12 inhibitors are well tolerated at the therapeutic range, and reduce viral load in studies of DENV, HCV, WNV and SARS-CoV-2 in human cells and WNV in a mouse model.


Asunto(s)
COVID-19 , Virus ARN , Humanos , Ratones , Animales , Ratas , Antivirales/farmacología , SARS-CoV-2 , Interferón-alfa , Virus de la Encefalomiocarditis , Hidrolasas Diéster Fosfóricas
2.
Nature ; 544(7650): 309-315, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405027

RESUMEN

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Asunto(s)
Ebolavirus/genética , Ebolavirus/fisiología , Genoma Viral/genética , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Clima , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/aislamiento & purificación , Geografía , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Internacionalidad , Modelos Lineales , Epidemiología Molecular , Filogenia , Viaje/legislación & jurisprudencia , Viaje/estadística & datos numéricos
3.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26083749

RESUMEN

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/genética , Evolución Molecular , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Filogenia , Análisis Espacio-Temporal , Sustitución de Aminoácidos/genética , Ebolavirus/aislamiento & purificación , Femenino , Guinea/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Liberia/epidemiología , Masculino , Malí/epidemiología , Datos de Secuencia Molecular , Sierra Leona/epidemiología
5.
Microbiol Spectr ; : e0415422, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946725

RESUMEN

Ebola virus (EBOV) causes a severe infection called Ebola virus disease (EVD). The pathogenesis of EBOV infection is complex, and outcome has been associated with a variety of immunological and cellular factors. Disease can result from several mechanisms, including direct organ and endothelial cell damage as a result of viral replication. During the2013 to 2016 Western Africa EBOV outbreak, several mutants emerged, with changes in the genes of nucleoprotein (NP), glycoprotein (GP), and the large (L) protein. Reverse genetic analysis has been used to investigate whether these mutations played any role in pathogenesis with mixed results depending on the experimental system used. Previous studies investigated the impact of three single nonsynonymous mutations (GP-A82V, NP-R111C, and L-D759G) on the fatality rate of mouse and ferret models and suggested that the L-D759G mutation decreased the virulence of EBOV. In this study, the effect of these three mutations was further evaluated by deep sequencing to determine viral population genetics and the host response in longitudinal samples of blood, liver, kidney, spleen, and lung tissues taken from the previous ferret model. The data indicated that the mutations were maintained in the different tissues, but the frequency of minor genomic mutations were different. In addition, compared to wild-type virus, the recombinant mutants had different within host effects, where the D759G (and accompanying Q986H) substitution in the L protein resulted in an upregulation of the immune response in the kidney, liver, spleen, and lungs. Together these studies provide insights into the biology of EBOV mutants both between and within hosts. IMPORTANCE Ebola virus infection can have dramatic effects on the human body which manifest in Ebola virus disease. The outcome of infection is either survival or death and in the former group with the potential of longer-term health consequences and persistent infection. Disease severity is undoubtedly associated with the host response, often with overt inflammatory responses correlated with poorer outcomes. The scale of the2013 to 2016 Western African Ebola virus outbreak revealed new aspects of viral biology. This included the emergence of mutants with potentially altered virulence. Biobanked tissue from ferret models of EBOV infected with different mutants that emerged in the Western Africa outbreak was used to investigate the effect of EBOV genomic variation in different tissues. Overall, the work provided insights into the population genetics of EBOV and showed that different organs in an animal model can respond differently to variants of EBOV.

6.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

7.
Br J Pharmacol ; 178(3): 626-635, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33125711

RESUMEN

BACKGROUND AND PURPOSE: Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. EXPERIMENTAL APPROACH: Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. KEY RESULTS: All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 µg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. CONCLUSION AND IMPLICATIONS: This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.


Asunto(s)
Heparina/farmacología , SARS-CoV-2/crecimiento & desarrollo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/farmacología , Chlorocebus aethiops , Heparina/metabolismo , Heparina/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ensayo de Placa Viral , Tratamiento Farmacológico de COVID-19
8.
Nat Commun ; 12(1): 5469, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552091

RESUMEN

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Administración Intranasal , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos/química , Epítopos/metabolismo , Femenino , Masculino , Mesocricetus , Pruebas de Neutralización , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
9.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627662

RESUMEN

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Pulmón/patología , Pulmón/virología , Animales , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular/fisiología , Interferón gamma/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
10.
Genome Biol ; 21(1): 238, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894206

RESUMEN

BACKGROUND: Viral load is a major contributor to outcome in patients with Ebola virus disease (EVD), with high values leading to a fatal outcome. Evidence from the 2013-2016 Ebola virus (EBOV) outbreak indicated that different genotypes of the virus can have different phenotypes in patients. Additionally, due to the error-prone nature of viral RNA synthesis in an individual patient, the EBOV genome exists around a dominant viral genome sequence. The minor variants within a patient may contribute to the overall phenotype in terms of viral protein function. To investigate the effects of these minor variants, blood samples from patients with acute EVD were deeply sequenced. RESULTS: We examine the minor variant frequency between patients with acute EVD who survived infection with those who died. Non-synonymous differences in viral proteins were identified that have implications for viral protein function. The greatest frequency of substitution was identified at three codon sites in the L gene-which encodes the viral RNA-dependent RNA polymerase (RdRp). Recapitulating this in an assay for virus replication, these substitutions result in aberrant viral RNA synthesis and correlate with patient outcome. CONCLUSIONS: Together, these findings support the notion that in patients who survived EVD, in some cases, the genetic variability of the virus resulted in deleterious mutations that affected viral protein function, leading to reduced viral load. Such mutations may also lead to persistent strains of the virus and be associated with recrudescent infections.


Asunto(s)
Ebolavirus/genética , Genoma Viral , Fiebre Hemorrágica Ebola/virología , Carga Viral , Humanos
11.
Nat Commun ; 11(1): 4198, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826914

RESUMEN

COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Inmunoglobulina A/inmunología , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Chlorocebus aethiops , Reacciones Cruzadas , Epítopos , Células HEK293 , Humanos , Inmunoglobulina A/metabolismo , Inmunoglobulina A Secretora/inmunología , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
13.
Nat Struct Mol Biol ; 27(9): 846-854, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661423

RESUMEN

The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (KD of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody-RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD-ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4-6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral , Receptores Virales/metabolismo , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/metabolismo , Anticuerpos Antivirales/ultraestructura , Afinidad de Anticuerpos , Reacciones Antígeno-Anticuerpo/inmunología , Betacoronavirus/metabolismo , Unión Competitiva , COVID-19 , Microscopía por Crioelectrón , Cristalografía por Rayos X , Epítopos/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Modelos Moleculares , Biblioteca de Péptidos , Peptidil-Dipeptidasa A/ultraestructura , Unión Proteica , Conformación Proteica , Receptores Virales/ultraestructura , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/ultraestructura , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/ultraestructura
14.
High Throughput ; 7(4)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332776

RESUMEN

Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.

16.
Front Microbiol ; 6: 747, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26322022

RESUMEN

A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.

17.
J Immunol Res ; 2014: 237043, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333059

RESUMEN

Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of "omic" technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.


Asunto(s)
Citometría de Flujo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis por Micromatrices/métodos , Microscopía Fluorescente/métodos , Bacillus anthracis/inmunología , Bacillus anthracis/fisiología , Ebolavirus/inmunología , Ebolavirus/fisiología , Francisella tularensis/inmunología , Francisella tularensis/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/microbiología , Sistema Inmunológico/virología
18.
Vaccine ; 28(50): 7979-86, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-20920573

RESUMEN

Mycobacterium bovis BCG-vaccination in the guinea pig model of tuberculosis (TB) is sufficiently protective that candidate TB vaccines are judged against this. Little is understood about how the BCG vaccine works and, in the absence of a definitive correlate of protection, it is difficult to interpret the significance of novel vaccine induced host responses. Here an extended custom-made microarray (86 guinea pig genes) was used to dissect temporal changes in BCG-vaccine induced gene signatures to different mycobacterial antigens. Initially at 4h, pro-inflammatory genes such as IL-1α, IL-1ß, IL-8 and GRO were up-regulated (P<0.001) and these were then superseded by IFN-γ and GM-CSF (at 12 and 20h) post-stimulation, ex vivo with PPD. Similar genes were seen following stimulation with viable BCG but with the addition of IL-23 (P<0.01) after 8h. Our results suggest that temporal changes in the up- and down-regulation of a variety of genes are required to trigger a successful protective response to TB in guinea pigs. This provides base-line information against which new TB vaccines can be compared.


Asunto(s)
Vacuna BCG/inmunología , Perfilación de la Expresión Génica , Cobayas/genética , Animales , Antígenos Bacterianos/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Cobayas/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Bazo/citología , Bazo/inmunología , Factores de Tiempo , Tuberculosis/inmunología , Tuberculosis/prevención & control , Regulación hacia Arriba
19.
PLoS One ; 2(4): e352, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17406676

RESUMEN

BACKGROUND: Francisella tularensis causes tularaemia, a life-threatening zoonosis, and has potential as a biowarfare agent. F. tularensis subsp. tularensis, which causes the most severe form of tularaemia, is usually confined to North America. However, a handful of isolates from this subspecies was obtained in the 1980s from ticks and mites from Slovakia and Austria. Our aim was to uncover the origins of these enigmatic European isolates. METHODOLOGY/PRINCIPAL FINDINGS: We determined the complete genome sequence of FSC198, a European isolate of F. tularensis subsp. tularensis, by whole-genome shotgun sequencing and compared it to that of the North American laboratory strain Schu S4. Apparent differences between the two genomes were resolved by re-sequencing discrepant loci in both strains. We found that the genome of FSC198 is almost identical to that of Schu S4, with only eight SNPs and three VNTR differences between the two sequences. Sequencing of these loci in two other European isolates of F. tularensis subsp. tularensis confirmed that all three European isolates are also closely related to, but distinct from Schu S4. CONCLUSIONS/SIGNIFICANCE: The data presented here suggest that the Schu S4 laboratory strain is the most likely source of the European isolates of F. tularensis subsp. tularensis and indicate that anthropogenic activities, such as movement of strains or animal vectors, account for the presence of these isolates in Europe. Given the highly pathogenic nature of this subspecies, the possibility that it has become established wild in the heartland of Europe carries significant public health implications.


Asunto(s)
Francisella tularensis/genética , Genoma Bacteriano , Cartilla de ADN , Francisella tularensis/clasificación , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
20.
Infect Immun ; 74(2): 1436-41, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428800

RESUMEN

Immune responses in the guinea pig model are understudied because of a lack of commercial reagents. We have developed a custom-made guinea pig oligonucleotide microarray (81 spots) and have examined the gene expression profile of splenocytes restimulated in vitro from Mycobacterium bovis BCG-vaccinated and naive animals. Eleven genes were significantly (P < 0.05) up-regulated following vaccination, indicating a Th1-type response. These results show that microarrays can be used to more fully define immune profiles of guinea pigs.


Asunto(s)
Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Mycobacterium bovis/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Bazo/inmunología , Tuberculosis/inmunología , Animales , Animales no Consanguíneos , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Cobayas , Activación de Linfocitos , Bazo/citología , Tuberculina/administración & dosificación , Tuberculina/inmunología , Tuberculosis/prevención & control , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA