Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Genome Res ; 23(9): 1395-409, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23657883

RESUMEN

We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.


Asunto(s)
Alelos , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN , Enfermedades Genéticas Congénitas/genética , Recombinación Homóloga , Proteínas Adaptadoras Transductoras de Señales/genética , Composición de Base , Deleción Cromosómica , Duplicación Cromosómica , Proteínas del Citoesqueleto , Genoma Humano , Humanos , Proteínas de la Membrana/genética , Motivos de Nucleótidos , Receptor Nicotínico de Acetilcolina alfa 7/genética
2.
Dev Med Child Neurol ; 56(10): 1016-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24814865

RESUMEN

AIM: Head thrusts are well documented in Joubert syndrome and ocular motor apraxia. We provide a detailed clinical characterization of head titubation in 13 young children with Joubert syndrome. METHOD: Detailed characterization of head titubation was assessed by targeted clinical evaluation and/or analysis of videos. RESULTS: In 12 of 13 children (eight males, five females; median age 6y, range 2mo-15y) head titubation was first recognized in the first 2 months of age and decreased in severity until spontaneous resolution. In all children, the head titubation was horizontal, high frequency (~3Hz), had small amplitude (5-10°), was never present during sleep, and did not interfere with the neurodevelopment during infancy. In the majority of children, emotion, anxiety, and tiredness were worsening factors for head titubation. INTERPRETATION: Head titubation is a benign, early presentation of Joubert syndrome. Head titubation in hypotonic infants should prompt a careful search for Joubert syndrome. Awareness of its occurrence in Joubert syndrome may avoid unnecessary investigations.


Asunto(s)
Enfermedades Cerebelosas/fisiopatología , Anomalías del Ojo/fisiopatología , Movimientos de la Cabeza/fisiología , Enfermedades Renales Quísticas/fisiopatología , Trastornos del Movimiento/fisiopatología , Retina/anomalías , Anomalías Múltiples , Adolescente , Edad de Inicio , Enfermedades Cerebelosas/complicaciones , Cerebelo/anomalías , Niño , Preescolar , Anomalías del Ojo/complicaciones , Femenino , Humanos , Lactante , Enfermedades Renales Quísticas/complicaciones , Masculino , Trastornos del Movimiento/etiología , Retina/fisiopatología , Estudios Retrospectivos
3.
Genome Med ; 9(1): 83, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934986

RESUMEN

BACKGROUND: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exones , Enfermedades Genéticas Congénitas , Estudios de Cohortes , Genoma Humano , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Serina-Treonina Quinasa 3 , Factores de Transcripción/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA