Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Chem Toxicol ; : 1-14, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38384198

RESUMEN

Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.

2.
Drug Chem Toxicol ; : 1-12, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738628

RESUMEN

Bio-sourced insect repellents are becoming more popular due to their safer applications. Known for its strong fly-repellent property, Cis, trans-para-menthane-3,8-diol (PMD) is the main component of the lemon eucalyptus essential oil and is synthesized from citronellal. In April 2005, US Centers for Disease Control approved two fly repellents that do not contain N,N-diethyl-meta-toluamide (DEET), including PMD. Due to the intentional and pervasive human exposure caused by DEET as insect repellent, concerns have been raised about its toxicological profile and potential harm to people. We hypothesized PMD would have a different toxicological profile than DEET. We synthesized PMD from Eucalyptus citriodora using green chemistry methods and analyzed its structures by 1H-NMR,13C-NMR, and GC/MS spectral methods. We used MTS assay to determine the percentage inhibition of PMD and DEET on keratinocyte (human epidermal keratinocyte [HaCaT]) cells. The xCelligence system was used and followed at real time. Effects of PMD and DEET on zebrafish embryo development were monitored and levels of lipid peroxidation, glutathione-S-transferase (GST), superoxide dismutase (SOD), and acetylcholinesterase (AchE) were evaluated at 72 h post-fertilization using spectrophotometric methods. Our results showed that while DEET inhibited human keratinocyte cell growth, while imporved cell viability and proliferation was exposed in PMD exposed group. In zebrafish embryos, PMD was less toxic in terms of development, oxidant-antioxidant status, and AChE activities than DEET. Based on these results we suggest an efficient method using green chemistry for the synthesis of PMD, which is found to be less toxic in zebrafish embryos and human keratinocyte cells.

3.
Toxicol Ind Health ; 40(5): 232-243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467557

RESUMEN

Exposure of zebrafish embryos to glucose is a suitable model for the fetal hyperglycemia seen in gestational diabetes. Diethylhexyl phthalate (DEHP), which is considered an endocrine-disrupting chemical, is one of the most common phthalate derivatives used in stretching plastic and is encountered in every area where plastic is used in daily life. In the present study, the effects of DEHP on pathways related to insulin resistance and obesity were examined in zebrafish embryos exposed to glucose as a fetal hyperglycemia model. Zebrafish embryos were exposed to DEHP, glucose, and glucose + DEHP for 72 h post-fertilization (hpf), and developmental parameters and locomotor activities were monitored. At 72 hpf ins, lepa, pparγ, atf4a, and il-6 expressions were determined by RT-PCR. Glucose, lipid peroxidation (LPO), nitric oxide (NO) levels, glutathione S-transferase (GST), superoxide dismutase (SOD), and acetylcholine esterase (AChE) activities were measured spectrophotometrically. Compared with the control group, glucose, LPO, GST activity, il6, and atf4a expressions increased in all exposure groups, while body length, locomotor, and SOD activities decreased. While AChE activity decreased in the DEHP and glucose groups, it increased in the glucose + DEHP group. Although glucose exposure increased pparγ and lepa expressions, DEHP significantly decreased the expressions of pparγ and lepa both in the DEHP and glucose + DEHP groups. Our findings showed that DEHP amplified oxidant and inflammatory responses in this fetal hyperglycemia model, predisposing insulin resistance in zebrafish embryos.


Asunto(s)
Dietilhexil Ftalato , Hiperglucemia , Resistencia a la Insulina , Animales , Dietilhexil Ftalato/toxicidad , Pez Cebra/metabolismo , Oxidantes , PPAR gamma , Glucosa/metabolismo , Hiperglucemia/inducido químicamente , Superóxido Dismutasa
4.
Toxicol Mech Methods ; 34(2): 203-213, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849293

RESUMEN

Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by 1H NMR, 13C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of nqO1, gfap, bdnf, vtg, egr, cyp1a, and igf2 were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.


Asunto(s)
Aceites Volátiles , Extractos Vegetales , Ácido Salicílico , Pez Cebra , Animales , Ácido Salicílico/toxicidad , Ácido Salicílico/metabolismo , Embrión no Mamífero , Queratinocitos , Salicilatos
5.
Toxicol Mech Methods ; : 1-11, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888055

RESUMEN

Benzoic acid, the most basic aromatic carboxylic acid, is produced industrially and used in cosmetic, hygiene, and pharmaceutical items as a flavoring ingredient and/or preservative. The significance of sodium benzoate, a metabolite of cinnamon, used as a food preservative and FDA-approved medication to treat urea cycle abnormalities in humans, has been shown to raise the levels of neurotrophic factors. Valproic acid (VPA), a commonly used anti-epileptic and mood-stabilizing medication, causes behavioral and intellectual problems and is a commonly used agent to induce animal model for autism. Aim of this study is to determine the effects of benzoic acid synthesized from Cinnamomum Cassia by green chemistry method on gene expressions related to autism development in case of VPA toxicity. Zebrafish embryos were exposed to low and high doses of benzoic acid for 72 h post-fertilization. Locomotor activities were determined. Acetylcholinesterase (AchE), lipid peroxidation, nitric oxide (NO), sialic acid (SA), glutathione (GSH)-S-transferase, catalase (CAT), and superoxide dismutase (SOD) activities were determined spectrophotometrically. eif4b, adsl, and shank3a expressions were determined by RT-PCR as autism-related genes. Although high-dose benzoic acid inhibited locomotor activity, benzoic acid at both doses ameliorated VPA-induced disruption in oxidant-antioxidant balance and inflammation in zebrafish embryos and was effective in improving the impaired expression of autism-related genes.

6.
Eur J Neurosci ; 57(4): 585-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36564343

RESUMEN

Disruption of the gut-brain axis in Parkinson's disease (PD) may lead to motor symptoms and PD pathogenesis. Recently, the neuroprotective potential of different PPARδ-agonists has been shown. We aimed to reveal the effects of erucic acid, peroxisome proliferator-activated receptors (PPARs)-ligand in rotenone-induced PD model in zebrafish, focusing on the gut-brain axis. Adult zebrafish were exposed to rotenone and erucic acid for 30 days. Liquid chromatography-mass spectrometry and tandem mass spectrometry (LC-MS/MS) analysis was performed. Raw files were analysed by Proteome Discoverer 2.4 software; peptide lists were searched against Danio rerio proteins. STRING database was used for protein annotations or interactions. Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione S-transferase (GST), acetylcholinesterase and the expressions of PD-related genes were determined. Immunohistochemical tyrosine hydroxylase (TH) staining was performed. LC-MS/MS analyses allowed identification of over 2000 proteins in each sample. The 2502 and 2707 proteins overlapped for intestine and brain. The 196 and 243 significantly dysregulated proteins in the brain and intestines were found in rotenone groups. Erucic acid treatment corrected the changes in the expression of proteins associated with cytoskeletal organisation, transport and localisation and improved locomotor activity, expressions of TH, PD-related genes (lrrk2, park2, park7, pink1) and oxidant-damage in brain and intestines in the rotenone group as evidenced by decreased LPO, No and increased GST. Our results showed beneficial effects of erucic acid as a PPARδ-ligand in neurotoxin-induced PD model in zebrafish. We believe that our study will shed light on the mechanism of the effects of PPARδ agonists and ω9-fatty acids in the gut-brain axis of PD.


Asunto(s)
Fármacos Neuroprotectores , PPAR delta , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/metabolismo , Rotenona , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Pez Cebra , Eje Cerebro-Intestino , Acetilcolinesterasa , Cromatografía Liquida , Ácidos Erucicos , Ligandos , Espectrometría de Masas en Tándem , Modelos Animales de Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Proteínas de Pez Cebra
7.
Mol Biol Rep ; 50(1): 815-828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36329336

RESUMEN

Neurodegenerative disease refers to a group of disorders that predominantly damage the neurons in the brain. Despite significant progress in the knowledge of neurodegenerative diseases, there is currently no disease-modifying drug available. Vitamin K was first established for its involvement in blood clotting, but there is now compelling evidence indicating its role in the neurological system. In particular, the results of recent studies on the effects of vitamin K2 on preventing apoptosis, oxidative stress, and microglial activation in neuron cells through its role in electron transport are very promising against Alzheimer's disease. In addition to its protective effect on cognitive functions, its inhibitory effects on inflammation and α-synuclein fibrillization in Parkinson's disease, which has been revealed in recent years, are remarkable. Although there are many studies on the mechanism and possible treatment methods of neurodegenerative diseases, especially Parkinson's and Alzheimer's disease, studies on the relationship between vitamin K and neurodegenerative diseases are very limited, yet have promising findings. Vitamin K has also been proposed for therapeutic use in multiple sclerosis patients to lower the intensity or to slow down the progression of the disease. Accordingly, the aim of this study is to review the current evidence for the use of vitamin K supplementation in neurodegenerative diseases, in particular Alzheimer's disease, Parkinson's disease, and multiple sclerosis.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Vitamina K/uso terapéutico
8.
Toxicol Mech Methods ; 33(2): 151-160, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35866229

RESUMEN

Zebrafish (Danio rerio) is becoming an increasingly important model in epilepsy research. Pentylenetetrazole (PTZ) is a convulsant agent that induces epileptic seizure-like state in zebrafish and zebrafish embryos and is most commonly used in antiepileptic drug discovery research to evaluate seizure mechanisms. Classical antiepileptic drugs, such as valproic acid (VPA) reduce PTZ-induced epileptiform activities. Opioid system has been suggested to play a role in epileptogenesis. The aim of our study is to determine the effects of morphine in PTZ-induced epilepsy model in zebrafish embryos by evaluating locomotor activity and parameters related to oxidant-antioxidant status, inflammation, and cholinergic system as well as markers of neuronal activity c-fos, bdnf, and opioid receptors. Zebrafish embryos at 72 hpf were exposed to PTZ (20 mM), VPA (1 mM), and Morphine (MOR) (100 µM). MOR and VPA pretreated groups were treated with either MOR (MOR + PTZ) or VPA (VPA + PTZ) for 20 min before PTZ expoure. Locomotor activity was quantified as total distance moved (mm), average speed (mm/sec) and exploration rate (%) and analyzed using ToxTrac tracking programme. Oxidant-antioxidant system parameters, acetylcholinesterase activity, and sialic acid leves were evaluated using spectrophotometric methods. The expression of c-fos, bdnf, oprm1, and oprd1 were evaluated by RT-PCR. MOR pretreatment ameliorated PTZ-induced locomotor pattern as evidenced by improved average speed, exploration rate and distance traveled. We report the restoration of inflammatory and oxidant-antioxidant system parameters, c-fos, bdnf, and opioid receptor oprm1 as the possible mechanisms involved in the ameliorative effect of MOR against PTZ-induced epileptogenic process in zebrafish embryos.


Asunto(s)
Epilepsia , Morfina , Pentilenotetrazol , Animales , Acetilcolinesterasa , Anticonvulsivantes/uso terapéutico , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Inflamación , Morfina/uso terapéutico , Estrés Oxidativo , Pentilenotetrazol/toxicidad , Receptores Opioides/genética , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Pez Cebra
9.
Neurochem Res ; 47(6): 1553-1564, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35142995

RESUMEN

Parkinson's disease (PD) is one of the most common forms of neurodegenerative diseases and research on potential therapeutic agents for PD continues. Rotenone is a neurotoxin that can pass the blood-brain barrier and is used to generate PD models in experimental animals. Boron is a microelement necessary for neural activity in the brain. Antioxidant, non-cytotoxic, anti-genotoxic, anti-carcinogenic effects of boric acid, the salt compound of boron has been reported before. Boronic acids have been approved for treatment by FDA and are included in drug discovery studies and pyridine boronic acids are a subclass of heterocyclic boronic acids used in drug design and discovery as substituted pyridines based on crystal engineering principles. The aim of our study was to determine the effect of 3-pyridinylboronic acid in rotenone-exposed zebrafish embryos, focusing on oxidant-antioxidant parameters and gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes gclm, gclc, hmox1a, nqo1, and PD related genes, brain-derived neurotrophic factor, dj1, and tnfα. Zebrafish embryos were exposed to Rotenone (10 µg/l); Low Dose 3-Pyridinylboronic acid (100 µM); High Dose 3-Pyridinylboronic acid (200 µM); Rotenone + Low Dose-3-Pyridinylboronic acid (10 µg/l + 100 µM); Rotenone + High Dose-3-Pyridinylboronic acid (10 µg/l + 200 µM) in well plates for 96 h post-fertilization (hpf). Our study showed for the first time that 3-pyridinylboronic acid, as a novel sub-class of the heterocyclic boronic acid compound, improved locomotor activities, ameliorated oxidant-antioxidant status by decreasing LPO and NO levels, and normalized the expressions of bdnf, dj1, tnf⍺ and Nrf2 target genes hmox1a and nqo1 in rotenone exposed zebrafish embryos. On the other hand, it caused the deterioration of the oxidant-antioxidant balance in the control group through increased lipid peroxidation, nitric oxide levels, and decreased antioxidant enzymes. We believe that these results should be interpreted in the context of the dose-toxicity and benefit-harm relationship of the effects of 3-pyridinylboronic.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Boro/metabolismo , Boro/farmacología , Ácidos Borónicos/metabolismo , Ácidos Borónicos/farmacología , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Piridinas/farmacología , Rotenona/toxicidad , Pez Cebra/metabolismo
10.
J Biochem Mol Toxicol ; 36(5): e23024, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218269

RESUMEN

Rotenone is used to generate Parkinson's disease (PD)-like symptoms in experimental animals. Octanoic acid (C8), is the principal fatty acid of medium-chain triglycerides in ketogenic diets. Beneficial effects of ketogenic diets were shown in PD. We applied proteomic methods to reveal the effects of octanoic acid in rotenone toxicity in zebrafish to gain information on the use of ketogenic diets in PD. Zebrafish were exposed to 5 µg/ml rotenone and octanoic acid (20 and 60 mg/ml) for 30 days. LC-MS/MS analysis was performed. Raw files were analyzed by Proteome Discoverer 2.4 software, peptide lists were searched against Danio rerio proteins. STRING database was used for protein annotations or interactions. 2317 unique proteins were quantified, 302 proteins were differentially expressed. Proteins involved in cell organization, biogenesis, transport, response to stimulus were most frequently expressed. Our study is first to report that the alterations in the expressions of proteins related to energy and redox system, stress response, and cytoskeleton proteins caused by rotenone exposure were normalized by octanoic acid treatment in zebrafish.


Asunto(s)
Enfermedad de Parkinson , Rotenona , Animales , Caprilatos , Cromatografía Liquida , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Proteómica , Rotenona/toxicidad , Espectrometría de Masas en Tándem , Pez Cebra/metabolismo
11.
Drug Chem Toxicol ; 45(4): 1544-1551, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33187454

RESUMEN

Among the mechanisms underlying Parkinson's disease, many pathogenic mechanisms are suggested to be effective such as oxidative stress, mitochondrial dysfunction, disruption of the ubiquitin-proteasome system, and neuroinflammation. Calcium is very important for neuronal and glial cells, neurodegenerative disease mechanisms are closely related to disturbed calcium homeostasis. Recent studies strongly support the role of inflammation in nigrostriatal degeneration in PD. In recent years, Rifampicin, a macrocyclic antibiotic has been shown to have a protective effect on neurons. This study aims to evaluate the effects of rifampicin in the experimental PD model induced by rotenone in zebrafish focusing on the relationship between calcium-dependent mitochondrial dysfunction and inflammation. Adult zebrafish were exposed to rotenone and rifampicin for 3 weeks. Locomotor activity was determined as the total distance that the zebrafish traveled for 5 min. Neuroinflammation and PD-related gene expressions were determined by RT-PCR. Mitochondrial calcium levels were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). Gamma synuclein, Park 7, Sigma-1 receptor expressions were determined by Western Blot. Our results show that rifampicin may be effective in reducing neuroinflammation, which may be an effective strategy to reduce mitochondrial dysfunction due to impaired calcium homeostasis in PD.


Asunto(s)
Enfermedades Neurodegenerativas , Rotenona , Animales , Calcio/metabolismo , Homeostasis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Mitocondrias , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Rifampin/toxicidad , Rotenona/toxicidad , Pez Cebra/metabolismo
12.
Drug Chem Toxicol ; 45(6): 2439-2447, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34340603

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases due to the loss of dopaminergic neurons in the midbrain in the substantia nigra. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic agent causing disruptions in mitochondria of dopaminergic neurons leading to impaired oxidant-antioxidant balance. Both zebrafish and zebrafish embryos are sensitive to MPTP. In zebrafish embryos, MPTP decreases the dopaminergic cells in the diencephalon by damaging dopaminergic neurons. Morphine is an opioid pain killer and a strong analgesic that is used to treat chronic pain. Until today morphine has been shown to regulate the survival or death of neurons and both protective and destructive effects of morphine have been reported in the central nervous system. This study aimed to evaluate the effects of morphine in MPTP-exposed zebrafish embryos. Developmental parameters were monitored and documented daily during embryonic development. Locomotor activity of zebrafish embryos at 96 h postfertilization (hpf) was determined. Acetylcholinesterase (AChE) activity and oxidant-antioxidant parameters were analyzed by biochemical methods. RT-PCR was used to evaluate bdnf, dj1, lrrk and pink1 expressions. Morphine treatment improved mortality and hatching rates, locomotor activity, AChE, and antioxidant enzyme activities as well as the expressions of bdnf, dj1, lrrk and pink1 in a dose-dependent manner that were altered by MPTP. Increased lipid peroxidation supports the role of morphine to induce autophagy to prevent PD-related pathologies. Our study provided important data on the possible molecular mechanism of the therapeutic effects of morphine in PD.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Animales , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Acetilcolinesterasa/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/uso terapéutico , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Morfina/farmacología , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/prevención & control , Intoxicación por MPTP/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidantes/metabolismo , Proteínas Quinasas/metabolismo , Pez Cebra
13.
Drug Chem Toxicol ; 45(2): 947-954, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32693643

RESUMEN

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 µM); MPTP + Low Dose 3-Pyridinylboronic acid (50 µM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 µM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.


Asunto(s)
Intoxicación por MPTP , Pez Cebra , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Ácidos Borónicos/metabolismo , Ácidos Borónicos/uso terapéutico , Modelos Animales de Enfermedad , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Ratones , Ratones Endogámicos C57BL , Piridinas , Pirrolidinas/metabolismo , Pirrolidinas/uso terapéutico , Pez Cebra/metabolismo
14.
Drug Chem Toxicol ; : 1-11, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36444776

RESUMEN

We aimed to evaluate how different types of toothpaste (TP) for children affected molecular mechanisms of odontogenesis in zebrafish embryos. Commercially available TPs were selected according to their detergent contents as the cocamidopropyl betaine (CAPB) containing TP (TP1) and sodium lauryl sulfate (SLS) containing TP (TP2). TP3 contained no detergent. Effects of SLS, and CAPB alone were also examined. TP and detergent concentrations affecting development were determined as 750 mg/L and 4 mg/L, respectively. Embryos were exposed to TP1, TP2, TP3, SLS, CAPB, and embryo medium (control) for 72 h post fertilization. Acetylcholinesterase (AChE) activity and oxidant-antioxidant parameters were analyzed spectrophotometrically. Expressions of tooth development genes were evaluated by reverse transcription PCR (RT-PCR). Intraocular distance, lower jaw, and ceratohyal cartilage length were displayed using Alcian Blue staining. axin2 and wnt10a expressions increased in SLS and TP2 groups. igf2a and eve1 expressions decreased in all groups except TP3. nrOb1 expression decreased in TP1, SLS, and CAPB groups. Oxidant-antioxidant balance was disturbed in all groups except TP3, evidenced by increased lipid peroxidation, nitric oxide. SLS, and CAPB groups were more affected in terms of AChE, glutathione-S-transferase, and superoxide dismutase; perturbations were observed in cartilage structures. Altered expression of tooth development gene axin2 correlated with wnt10a, and with changes in cartilage structures in SLS and TP2 groups. TP3 group presented no disruptions in oxidant-antioxidant balance. Our study shows the availability of externally developing zebrafish embryos in examining the effects of TP' contents on embryogenesis.

15.
Toxicol Ind Health ; 38(1): 19-28, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35090367

RESUMEN

Obesogens affect lipid metabolism, and genetic or epigenetic factors may also contribute to the progression of obesity. Endocrine-disrupting chemicals (EDCs) are the most striking among obesogens. Bisphenol A (BPA) is an estrogenic EDC used in food containers, adhesives, dye powders, and dental fillers. We aimed to elucidate molecular mechanisms of BPA's obesogenic effects focusing on obesogenic pathways in the liver including fibroblast growth factor (FGF) and Dnmt3a which is its epigenetic regulator, oxidant-antioxidant status, and inflammatory cytokines. Zebrafish were divided into three groups as control, low-dose BPA (1 µm BPA), and high-dose BPA groups (10 µm BPA). At the end of 30 days, oral glucose tolerance test (OGTT) was performed, fasting blood glucose levels were measured, and hepatopancreas tissues were taken. Malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione S-transferase (GST), and nitric oxide (NO) activities were examined in the hepatopancreas. Inflammatory cytokines, lepa, fgf21, and dnmt3a expressions were determined by RT-PCR. BPA exposure increased the body weights, il1ß, tnfα, il6, lepa, fgf21, and dnmt3a expressions, impaired glucose tolerance, and oxidant-antioxidant status in a dose-dependent manner. Hepatocyte degeneration, lipid vacuolization, and vasocongestion were observed in both BPA-exposed groups. Our study suggests impaired glucose tolerance, oxidant-antioxidant balance, increased inflammatory response, fgf21 expression, and dnmt3a expressions as the possible mechanisms for the BPA-induced obesity model in zebrafish.


Asunto(s)
Antioxidantes/metabolismo , Compuestos de Bencidrilo/toxicidad , Citocinas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Obesidad/inducido químicamente , Fenoles/toxicidad , Pez Cebra/metabolismo , Animales , ADN Metiltransferasa 3A/metabolismo , Prueba de Tolerancia a la Glucosa , Metabolismo de los Lípidos , Estrés Oxidativo
16.
Mol Biol Rep ; 48(6): 5259-5273, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34228274

RESUMEN

BACKGROUND: Dysfunction of the gastrointestinal tract (GIT) is one of the most common non-motor symptom of Parkinson's Disease (PD). Pathological processes causing PD were suggested to initiate in the enteric nervous system (ENS) and proceed to the central nervous system (CNS). There are studies showing that low-carbohydrate ketogenic diets can improve motor symptoms of PD. Caprylic acid (C8) is the principal fatty acid component of the medium-chain triglycerides in the ketogenic diets. In this study, we aimed to evaluate the effects of caprylic acid, in neurotoxin exposed zebrafish focusing on the relationship between intestinal and brain oxidative stress and inflammation. METHODS: Adult zebrafish were exposed to rotenone (5 µg/L) (R group) and caprylic acid (20 and 60 mg/mL) (L + HDCA and R + HDCA groups) for 30 days. At the end of 30 days locomotor activities were determined. Levels of lipid peroxidation (LPO), nitric oxide, glutathione and superoxide dismutase and glutathione S-transferase activities were determined by spectrophotometric methods and gene expressions of tnf⍺, il1, il6, il21, ifnÉ£ and bdnf were evaluated by RT-PCR in the brain and intestinal tissues of zebrafish. RESULTS: Caprylic acid ameliorated LPO, NO, SOD and the expressions of tnf⍺, il1, il6, il21, ifnÉ£ and bdnf in brain and intestines. Locomotor activities were only ameliorated in high dose R + HDCA group. CONCLUSIONS: Caprylic acid ameliorated the neurotoxin-induced oxidative stress and inflammation both in the brain and intestines and enhanced locomotor activity in zebrafish.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Caprilatos/farmacología , Animales , Encéfalo/metabolismo , Eje Cerebro-Intestino/efectos de los fármacos , Caprilatos/metabolismo , Modelos Animales de Enfermedad , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Glutatión/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Rotenona/efectos adversos , Superóxido Dismutasa/metabolismo , Pez Cebra , Proteínas de Pez Cebra
17.
Cell Mol Biol (Noisy-le-grand) ; 66(8): 41-46, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34174976

RESUMEN

Zebrafish (danio rerio) is a small, tropical freshwater teleost fish that belongs to the Cyprinidae family and lives in natural waters and rice fields in South Asia, North India, and Pakistan. Zebrafish has become a popular vertebrate model organism for biomedical research due to its numerous advantages such as their small size, short life cycle, accessibility in large numbers and inexpensive maintenance. In addition, fertilization happens externally in zebrafish and allows zebrafish to be manipulated directly. As another important advantage, the embryos are transparent thus the stages of development can be easily identified. Zebrafish can have multiple co-orthologs for human genes. In the 1930s, the zebrafish was first used as a model for developmental and embryological studies and in 1981, was introduced as a genetic model by Streisinger by force of developed genetic techniques in zebrafish such as cloning, mutagenesis and transgenesis. In the 1990s, various genetic manipulations were introduced. These improvements have contributed to the popularity of zebrafish. After that zebrafish was used in various research areas including genetics, biomedicine, neurobiology, toxicology, pharmacology as well as in human disease models. Zebrafish is also becoming a popular model organism in dental research. It is preferred in dental material toxicity studies and in research related to the genetic and molecular factors in tooth formation and craniofacial development. This review provides information on the use of zebrafish in dental research, focusing on tooth formation and dentition (pharyngeal dentition) of zebrafish and the dental research performed using zebrafish.


Asunto(s)
Materiales Dentales/toxicidad , Modelos Animales de Enfermedad , Embrión no Mamífero/efectos de los fármacos , Ensayo de Materiales/métodos , Enfermedades Estomatognáticas/inducido químicamente , Pruebas de Toxicidad/métodos , Animales , Investigación Biomédica/métodos , Embrión no Mamífero/embriología , Humanos , Enfermedades Estomatognáticas/embriología , Pez Cebra
18.
Cell Mol Biol (Noisy-le-grand) ; 66(1): 70-75, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32359387

RESUMEN

The amount of technological products including television, radio transmitters, and mobile phone that have entered our daily life has increased in recent years. But these devices may cause adverse effects on human health. Electromagnetic shielding fabrics may limit and inhibit electromagnetic waves. Aim of our study was to evaluate electromagnetic wave blocking performance of nonwoven textile surfaces on zebrafish embryos that were exposed to electromagnetic waves at specific frequencies. Oxidant-antioxidant system parameters were evaluated spectrophotometrically. The expressions of tp53 and casp3a were evaluated by RT-PCR. Results showed that electromagnetic shielding fabrics produced as conductive nonwoven textile surfaces improved oxidant-antioxidant status and tp53 expression that were impaired in electromagnetic waves exposed zebrafish embryos. Also, electromagnetic shielding fabrics decreased casp3a expression responsible for the execution phase of apoptosis that increased in electromagnetic waves exposed zebrafish embryos.


Asunto(s)
Apoptosis , Radiación Electromagnética , Embrión no Mamífero/patología , Estrés Oxidativo , Sustancias Protectoras/farmacología , Textiles , Pez Cebra/embriología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética
19.
Ann Vasc Surg ; 69: 391-399, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32599107

RESUMEN

BACKGROUND: Phosphodiesterase enzymes play a pivotal role in the pathogenesis of ischemia/reperfusion (IR). We examined the role of milrinone (MIL), a phosphodiesterase 3 inhibitor, on remote injury of the heart and lung after abdominal aortic cross-clamping. DESIGN: Experimental study. METHODS: Twenty-one Wistar rats were divided into 3 groups: (1) control (C, n = 7), underwent laparotomy and exploration of abdominal aorta only; (2) IR (n = 7), normal saline was applied intraperitoneally (i.p) before IR induced by clamping of the abdominal aorta for 1 hr and then allowing reperfusion for 1 hr; and (3) MIL + IR (n = 7), MIL was given (0.5 mg/kg, i.p) before IR. After sacrification, the lungs and hearts were taken out for analyses and the tissue malondialdehyde (MDA) and glutathione (GSH) were studied. All tissues were examined under light microscopy and transmission electron microscopy (TEM). Expressions of caveolin (Cav)-1 in the lung and Cav-1 and Cav-3 in the heart were examined immunohistochemically. RESULTS: The MIL + IR group had significantly a lower magnitude of oxidative stress than the IR group both in the lung and heart (lung: P = 0.03 for MDA and 0.001 for GSH and heart: P = 0.002 for MDA and 0.000 for GSH). In light microscopy, the MIL + IR group had statistically a lower total injury score than the IR group for both the lung and heart tissue (P = 0.03 and P = 0.04, respectively). In TEM, regression of mitochondrial degeneration and lamellar bodies in type II pneumocytes in the lungs and obvious improvements in disruption at the intercalated discs and mitochondrial degeneration in the hearts in the MIL + IR group were detected compared with the IR group. The expression of both Cav-1 and Cav-3 in the MIL + IR group was improved compared with the IR group (P = 0.03 for both). CONCLUSIONS: MIL attenuates remote injury of heart and lung in lower body IR by inhibiting oxidative stress. Moreover, Cav-1 and Cav-3 might have a potential role in MIL-induced cardioprotection.


Asunto(s)
Aorta Abdominal/cirugía , Corazón/efectos de los fármacos , Lesión Pulmonar/prevención & control , Pulmón/efectos de los fármacos , Milrinona/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Inhibidores de Fosfodiesterasa 3/farmacología , Animales , Antioxidantes/farmacología , Caveolina 1/metabolismo , Caveolina 3/metabolismo , Constricción , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/ultraestructura , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Transducción de Señal
20.
Int J Neurosci ; 130(6): 574-582, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31771386

RESUMEN

Aim: The aim of this study is to investigate the possible protective effects of mitoquinone and oleandrin on rotenone induced Parkinson's disease in zebrafish. Materials and methods: Adult zebrafish were exposed to rotenone and mitoquinone for 30 days. Biochemical parameters were determined by spectrophotometric method and Parkinson's disease-related gene expressions were determined by reverse transcription polymerase chain reaction method. Measurement of neurotransmitters was performed by liquid chromatography tandem-mass spectrometry instrument. The accumulation of synuclein was demonstrated by immunohistochemical staining. In vitro thiazolyl blue tetrazolium bromide method was applied to determine the mitochondrial function of synaptosomal brain fractions using rotenone as a neurotoxic agent and mitoquinone and oleandrin as neuroprotective agents. Results: Mitoquinone improved the oxidant-antioxidant balance and neurotransmitter levels that were disrupted by rotenone. Mitoquinone also ameliorated the expressions of Parkinson's disease-related gene expressions that were disrupted by rotenone. According to thiazolyl blue tetrazolium bromide assay results, mitoquinone and oleandrin increased mitochondrial function which was decreased due to rotenone exposure. Conclusion: Based on the results of our study, positive effects of mitoquinone were observed in Parkinson's disease model induced by rotenone in zebrafish.


Asunto(s)
Cardenólidos/administración & dosificación , Expresión Génica/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Compuestos Organofosforados/administración & dosificación , Enfermedad de Parkinson/metabolismo , Ubiquinona/análogos & derivados , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas de Peces/metabolismo , Locomoción/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Rotenona/administración & dosificación , Sinucleínas/metabolismo , Ubiquinona/administración & dosificación , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA