Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33694, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040411

RESUMEN

Background: There is concern regarding the increasing resistance of Group A streptococcus (GAS) to routinely used antibiotics. GAS is a common cause of bacterial pharyngitis and more severe invasive infections such as septicaemia. Furthermore, GAS pharyngitis is the antecedent for serious conditions such as rheumatic fever and rheumatic heart disease. The study aimed to determine the antimicrobial susceptibility patterns of GAS cultured from patients with invasive and non-invasive infections from Cape Town, as part of the AFROStrep Registry. Methods: Samples were provided by the AFROStrep Registry, a continental endeavour aiming to document Streptococcus pyogenes infection in Africa and create the first biorepository of its kind. Ninety-five GAS isolates (invasive, n = 40; non-invasive, n = 55) were evaluated for resistance to a panel of 20 antibiotics using the Sensititre® STP6F system with MICs interpreted by CLSI break points. Results: Amongst all isolates, highest levels of resistance were observed with respect to tetracycline (8.33 %), followed by azithromycin (1.04 %) and erythromycin (1.04 %). No resistance to the remaining antibiotics was detected amongst all isolates. No differences with regard to MIC values were observed between isolates from invasive and non-invasive infections (p-value >0.05 for all antibiotics). Conclusion: GAS remains susceptible to routine-antimicrobial agents used in our low-resourced setting. Eight percent of the GAS isolates were resistant to tetracycline, and we did not observe macrolide resistance as reported in high income countries. This is the first study to report on the antimicrobial patterns of GAS in South Africa. These results address a critical gap in the available data on GAS in Africa and specifically South Africa and, thus, aid in avoiding therapeutic failures.

2.
Front Cell Infect Microbiol ; 14: 1337861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055978

RESUMEN

Introduction: It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods: We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results: A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion: This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Factores de Virulencia , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/genética , Infecciones Estreptocócicas/microbiología , Humanos , Virulencia/genética , Secuenciación Completa del Genoma , Proteínas Bacterianas/genética
3.
mSphere ; 8(3): e0011323, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37154726

RESUMEN

There is limited information on the human immune response following infection with group A Streptococcus (Strep A). Animal studies have shown, in addition to the M protein, that shared Strep A antigens elicit protective immunity. This study aimed to investigate the kinetics of antibody responses against a panel of Strep A antigens in a cohort of school-aged children in Cape Town, South Africa. Participants provided serial throat cultures and serum samples at two-monthly follow-up visits. Strep A recovered were emm-typed, and serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) to assess immune responses to thirty-five Strep A antigens (10-shared and 25-M peptides). Serologic evaluations were performed on serial serum samples from 42 selected participants (from 256 enrolled) based on the number of follow-up visits, the frequency of visits, and throat culture results. Among these, there were 44 Strep A acquisitions, 36 of which were successfully emm-typed. Participants were grouped into three clinical event groups based on culture results and immune responses. A preceding infection was most convincingly represented by a Strep A-positive culture with an immune response to at least one shared antigen and M peptide (11 events) or a Strep A-negative culture with antibody responses to shared antigens and M peptides (9 events). More than a third of participants demonstrated no immune response despite a positive culture. This study provided important information regarding the complexity and variability of human immune responses following pharyngeal acquisition of Strep A, as well as demonstrating the immunogenicity of Strep A antigens currently under consideration as potential vaccine candidates. IMPORTANCE There is currently limited information regarding the human immune response to group A streptococcal throat infection. An understanding of the kinetics and specificity of antibody responses against a panel of Group A Streptococcus (GAS) antigens will serve to refine diagnostic approaches and contribute to vaccine efforts, which together will serve to reduce the burden of rheumatic heart disease, a major source of morbidity and mortality especially in the developing world. This study, utilizing an antibody-specific assay, uncovered three patterns of response profiles following GAS infection, among 256 children presenting with sore throat to local clinics. Overall, the response profiles were complex and variable. Of note, a preceding infection was most convincingly represented by a GAS-positive culture with an immune response to at least one shared antigen and M peptide. Also, more than a third of participants demonstrated no immune response despite a positive culture. All antigens tested were immunogenic, providing guidance for future vaccine development.


Asunto(s)
Faringitis , Infecciones Estreptocócicas , Animales , Humanos , Niño , Faringe , Sudáfrica , Streptococcus pyogenes , Antígenos Bacterianos , Péptidos
4.
Front Cardiovasc Med ; 8: 691646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355030

RESUMEN

Background: Previous studies have established that streptococcal antibody titer is correlated with a diagnosis of acute rheumatic fever (ARF). However, results vary in the usefulness of GAS antibodies, particularly anti-streptolysin-O (ASO) and anti-DNase B, in confirming a recent GAS infection. Therefore, we sought to provide, from published studies, an evidence-based synthesis of the correlation of streptococcal serology to establish the usefulness of immunological data in aiding the diagnosis of ARF. These findings are anticipated to have implications where echocardiography is not freely available, especially where ARF is rampant. Methods: We conducted a comprehensive search across a number of databases. Applying a priori criteria, we selected articles reporting on studies, regardless of study design, that evaluate the levels of antibodies against GAS-specific antigens in ARF subjects against control values or a published standard. Data were extracted onto data extraction forms, captured electronically, and analyzed using Stata software. Risk of bias was assessed in included studies using the Newcastle-Ottawa Scale (NOS). Results and Conclusion: The search strategy yielded 534 studies, from which 24 met the inclusion criteria, reporting on evaluation of titers for SLO (n = 10), DNase B (n = 9), anti-streptokinase (ASK) (n = 3) amongst others. Elevation in titers was determined by comparison with controls and upper limit of normal (ULN) antibody values as determined in healthy individuals. Meta-analysis of case-controlled studies revealed moderate odds ratio (OR) correlations between ARF diagnosis and elevated titers for SLO (OR = 10.57; 95% CI, 3.36-33.29; 10 studies) and DNAse B (OR = 6.97; 95% CI, 2.99-16.27; 7 studies). While providing support for incorporating SLO and DNase B in the diagnosis of ARF, we present the following reflections: an elevation in SLO and DNase B levels are not consistently associated with an ARF diagnosis; increasing the number of GAS proteins in the test is warranted to improve sensitivity; paired (acute and convalescent) samples could provide a more accurate indication of a rising titer. Use of community-based controls as a standard is not a reliable marker by which to gauge recent GAS infection.

5.
mSphere ; 5(4)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669471

RESUMEN

An emm-cluster based system was proposed as a standard typing scheme to facilitate and enhance future studies of group A Streptococcus (GAS) epidemiological surveillance, M protein function, and vaccine development strategies. We provide an evidence-based distribution of GAS emm clusters in Africa and assess the potential coverage of the new 30-valent vaccine in terms of an emm cluster-based approach. Two reviewers independently assessed studies retrieved from a comprehensive search and extracted relevant data. Meta-analyses were performed (random-effects model) to aggregate emm cluster prevalence estimates. Eight studies (n = 1,595 isolates) revealed the predominant emm clusters as E6 (18%; 95% confidence interval [CI], 12.6% to 24.0%), followed by E3 (14%; 95% CI, 11.2% to 17.4%) and E4 (13%; 95% CI, 9.5% to 16.0%). There was negligible variation in emm clusters with regard to regions, age, and socioeconomic status across the continent. Considering an emm cluster-based vaccine strategy, which assumes cross-protection within clusters, the 30-valent vaccine currently in clinical development would provide hypothetical coverage to 80.3% of isolates in Africa. This systematic review indicates the most predominant GAS emm cluster in Africa is E6 followed by E3, E4, and D4. The current 30-valent vaccine would provide considerable coverage across the diversity of emm cluster types in Africa. Future efforts could be directed toward estimating the overall potential coverage of the new 30-valent vaccine based on cross-opsonization studies with representative panels of GAS isolates from populations at highest risk for GAS diseases.IMPORTANCE Low vaccine coverage is of grave public health concern, particularly in developing countries where epidemiological data are often absent. To inform vaccine development for group A Streptococcus (GAS), we report on the epidemiology of the M protein emm clusters from GAS infections in Africa, where GAS-related illnesses and their sequelae, including rheumatic fever and rheumatic heart disease, are of a high burden. This first report of emm clusters across the continent indicates a high probably of coverage by the M protein-based vaccine currently undergoing testing were an emm-cluster based approach to be used.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/química , Streptococcus pyogenes/clasificación , África/epidemiología , Antígenos Bacterianos/química , Humanos , Prevalencia , Infecciones Estreptocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA