Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(2): 123-131, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28092374

RESUMEN

Discoveries leading to an improved understanding of immune surveillance of the central nervous system (CNS) have repeatedly provoked dismissal of the existence of immune privilege of the CNS. Recent rediscoveries of lymphatic vessels within the dura mater surrounding the brain, made possible by modern live-cell imaging technologies, have revived this discussion. This review emphasizes the fact that understanding immune privilege of the CNS requires intimate knowledge of its unique anatomy. Endothelial, epithelial and glial brain barriers establish compartments in the CNS that differ strikingly with regard to their accessibility to immune-cell subsets. There is a unique system of lymphatic drainage from the CNS to the peripheral lymph nodes. We summarize current knowledge on the cellular and molecular mechanisms involved in immune-cell trafficking and lymphatic drainage from the CNS, and we take into account differences in rodent and human CNS anatomy.


Asunto(s)
Sistema Nervioso Central/inmunología , Duramadre/inmunología , Tolerancia Inmunológica , Microglía/inmunología , Fisiología Comparada , Animales , Autoinmunidad , Movimiento Celular/inmunología , Sistema Nervioso Central/anatomía & histología , Humanos , Vigilancia Inmunológica , Ratones , Ratas
2.
Immunity ; 53(3): 484-486, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937150

RESUMEN

The presence of CD4+ T cells in the healthy brain parenchyma remains controversial due to the barrier function of the glia limitans. Pasciuto, Burton, Roca et al. in Cell describe the dynamic recruitment of CD4+ T cells within the brain parenchyma, their unexpected contribution to microglial maturation, and, ultimately, their influence on behavior.


Asunto(s)
Linfocitos T CD4-Positivos , Microglía , Adulto , Encéfalo , Feto , Amigos , Humanos
3.
Eur J Immunol ; 54(6): e2350761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566526

RESUMEN

In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.


Asunto(s)
Barrera Hematoencefálica , Encefalomielitis Autoinmune Experimental , Células Endoteliales , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Médula Espinal/patología , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T CD4-Positivos/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad
4.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521959

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Canales Catiónicos TRPV , Humanos , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación/metabolismo , Esclerosis Múltiple/patología , Canales Catiónicos TRPV/metabolismo
5.
Acta Neuropathol ; 147(1): 38, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347307

RESUMEN

Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.


Asunto(s)
Encéfalo , Células Endoteliales , Encéfalo/patología , Macrófagos , Sistema Nervioso Central/patología , Microglía
6.
J Cell Sci ; 134(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33912914

RESUMEN

The migration of activated T cells across the blood-brain barrier (BBB) is a critical step in central nervous system (CNS) immune surveillance and inflammation. Whereas T cell diapedesis across the intact BBB seems to occur preferentially through the BBB cellular junctions, impaired BBB integrity during neuroinflammation is accompanied by increased transcellular T cell diapedesis. The underlying mechanisms directing T cells to paracellular versus transcellular sites of diapedesis across the BBB remain to be explored. By combining in vitro live-cell imaging of T cell migration across primary mouse brain microvascular endothelial cells (pMBMECs) under physiological flow with serial block-face scanning electron microscopy (SBF-SEM), we have identified BBB tricellular junctions as novel sites for T cell diapedesis across the BBB. Downregulated expression of tricellular junctional proteins or protein-based targeting of their interactions in pMBMEC monolayers correlated with enhanced transcellular T cell diapedesis, and abluminal presence of chemokines increased T cell diapedesis through tricellular junctions. Our observations assign an entirely novel role to BBB tricellular junctions in regulating T cell entry into the CNS. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Barrera Hematoencefálica , Migración Transendotelial y Transepitelial , Animales , Transporte Biológico , Células Endoteliales , Ratones , Linfocitos T , Uniones Estrechas
7.
Eur J Immunol ; 52(6): 869-881, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35476319

RESUMEN

MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Sistema Inmunológico , Inmunomodulación
8.
Eur J Immunol ; 52(1): 161-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34524684

RESUMEN

The migration of CD4+ effector/memory T cells across the blood-brain barrier (BBB) is a critical step in MS or its animal model, EAE. T-cell diapedesis across the BBB can occur paracellular, via the complex BBB tight junctions or transcellular via a pore through the brain endothelial cell body. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB, we here directly compared the transcriptome profile of pMBMECs favoring transcellular or paracellular T-cell diapedesis by RNA sequencing (RNA-seq). We identified the atypical chemokine receptor 1 (Ackr1) as one of the main candidate genes upregulated in pMBMECs favoring transcellular T-cell diapedesis. We confirmed upregulation of ACKR1 protein in pMBMECs promoting transcellular T-cell diapedesis and in venular endothelial cells in the CNS during EAE. Lack of endothelial ACKR1 reduced transcellular T-cell diapedesis across pMBMECs under physiological flow in vitro. Combining our previous observation that endothelial ACKR1 contributes to EAE pathogenesis by shuttling chemokines across the BBB, the present data support that ACKR1 mediated chemokine shuttling enhances transcellular T-cell diapedesis across the BBB during autoimmune neuroinflammation.


Asunto(s)
Barrera Hematoencefálica , Linfocitos T CD4-Positivos , Sistema del Grupo Sanguíneo Duffy , Encefalomielitis Autoinmune Experimental , Células T de Memoria , Esclerosis Múltiple , Receptores de Superficie Celular , Migración Transendotelial y Transepitelial , Animales , Ratones , Barrera Hematoencefálica/inmunología , Linfocitos T CD4-Positivos/inmunología , Sistema del Grupo Sanguíneo Duffy/genética , Sistema del Grupo Sanguíneo Duffy/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/genética , Inflamación/inmunología , Células T de Memoria/inmunología , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Migración Transendotelial y Transepitelial/genética , Migración Transendotelial y Transepitelial/inmunología
9.
J Neuroinflammation ; 20(1): 123, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221552

RESUMEN

INTRODUCTION: The humanized anti-α4 integrin blocking antibody natalizumab (NTZ) is an effective treatment for relapsing-remitting multiple sclerosis (RRMS) that is associated with the risk of progressive multifocal leukoencephalopathy (PML). While extended interval dosing (EID) of NTZ reduces the risk for PML, the minimal dose of NTZ required to maintain its therapeutic efficacy remains unknown. OBJECTIVE: Here we aimed to identify the minimal NTZ concentration required to inhibit the arrest of human effector/memory CD4+ T cell subsets or of PBMCs to the blood-brain barrier (BBB) under physiological flow in vitro. RESULTS: Making use of three different human in vitro BBB models and in vitro live-cell imaging we observed that NTZ mediated inhibition of α4-integrins failed to abrogate T cell arrest to the inflamed BBB under physiological flow. Complete inhibition of shear resistant T cell arrest required additional inhibition of ß2-integrins, which correlated with a strong upregulation of endothelial intercellular adhesion molecule (ICAM)-1 on the respective BBB models investigated. Indeed, NTZ mediated inhibition of shear resistant T cell arrest to combinations of immobilized recombinant vascular cell adhesion molecule (VCAM)-1 and ICAM-1 was abrogated in the presence of tenfold higher molar concentrations of ICAM-1 over VCAM-1. Also, monovalent NTZ was less potent than bivalent NTZ in inhibiting T cell arrest to VCAM-1 under physiological flow. In accordance with our previous observations ICAM-1 but not VCAM-1 mediated T cell crawling against the direction of flow. CONCLUSION: Taken together, our in vitro observations show that high levels of endothelial ICAM-1 abrogate NTZ mediated inhibition of T cell interaction with the BBB. EID of NTZ in MS patients may thus require consideration of the inflammatory status of the BBB as high levels of ICAM-1 may provide an alternative molecular cue allowing for pathogenic T cell entry into the CNS in the presence of NTZ.


Asunto(s)
Barrera Hematoencefálica , Linfocitos T , Humanos , Natalizumab , Molécula 1 de Adhesión Intercelular , Integrina alfa4 , Linfocitos T CD4-Positivos
10.
Brain ; 145(12): 4334-4348, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35085379

RESUMEN

Blood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis. To this end, we made use of human induced pluripotent stem cells derived from healthy controls and MS patients and differentiated them into brain microvascular endothelial cell (BMEC)-like cells as in vitro model of the BBB. MS-derived BMEC-like cells showed impaired junctional integrity, barrier properties and efflux pump activity when compared to healthy controls. Also, MS-derived BMEC-like cells displayed an inflammatory phenotype with increased adhesion molecule expression and immune cell interactions. Activation of Wnt/ß-catenin signalling in MS-derived endothelial progenitor cells enhanced barrier characteristics and reduced the inflammatory phenotype. Our study provides evidence for an intrinsic impairment of BBB function in MS patients that can be modelled in vitro. Human iPSC-derived BMEC-like cells are thus suitable to explore the molecular underpinnings of BBB dysfunction in MS and will assist in the identification of potential novel therapeutic targets for BBB stabilization.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esclerosis Múltiple , Humanos , Barrera Hematoencefálica/patología , Esclerosis Múltiple/patología , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Encéfalo/fisiología
11.
Glia ; 70(11): 2045-2061, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762739

RESUMEN

Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias , Oligodendroglía/metabolismo , Oxidación-Reducción , Médula Espinal/metabolismo
12.
J Neuroinflammation ; 19(1): 304, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527076

RESUMEN

BACKGROUND: Listeria monocytogenes (Lm) is a bacterial pathogen of major concern for humans and ruminants due to its neuroinvasive potential and its ability to cause deadly encephalitis (neurolisteriosis). On one hand, polymorphonuclear neutrophils (PMN) are key players in the defense against Lm, but on the other hand intracerebral infiltration with PMN is associated with significant neural tissue damage. Lm-PMN interactions in neurolisteriosis are poorly investigated, and factors inducing PMN chemotaxis to infectious foci containing Lm in the central nervous system (CNS) remain unidentified. METHODS: In this study, we assessed bovine PMN chemotaxis towards Lm and supernatants of infected endogenous brain cell populations in ex vivo chemotaxis assays, to identify chemotactic stimuli for PMN chemotaxis towards Lm in the brain. In addition, microglial secretion of IL-8 was assessed both ex vivo and in situ. RESULTS: Our data show that neither Lm cell wall components nor intact bacteria elicit chemotaxis of bovine PMN ex vivo. Moreover, astrocytes and neural cells fail to induce bovine PMN chemotaxis upon infection. In contrast, supernatant from Lm infected microglia readily induced chemotaxis of bovine PMN. Microglial expression and secretion of IL-8 was identified during early Lm infection in vitro and in situ, although IL-8 blocking with a specific antibody could not abrogate PMN chemotaxis towards Lm infected microglial supernatant. CONCLUSIONS: These data provide evidence that host-derived rather than bacterial factors trigger PMN chemotaxis to bacterial foci in the CNS, that microglia have a primary role as initiators of bovine PMN chemotaxis into the brain during neurolisteriosis and that blockade of these factors could be a therapeutic target to limit intrathecal PMN chemotaxis and PMN associated damage in neurolisteriosis.


Asunto(s)
Listeria monocytogenes , Humanos , Animales , Bovinos , Microglía , Neutrófilos/metabolismo , Quimiotaxis , Interleucina-8/metabolismo , Quimiotaxis de Leucocito
13.
J Intern Med ; 292(1): 47-67, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35184353

RESUMEN

The central nervous system (CNS) coordinates all our body functions. Neurons in the CNS parenchyma achieve this computational task by high speed communication via electrical and chemical signals and thus rely on a strictly regulated homeostatic environment, which does not tolerate uncontrolled entry of blood components including immune cells. The CNS thus has a unique relationship with the immune system known as CNS immune privilege. Previously ascribed to the presence of blood-brain barriers and the lack of lymphatic vessels in the CNS parenchyma prohibiting, respectively, efferent and afferent connections with the peripheral immune system, it is now appreciated that CNS immune surveillance is ensured by cellular and acellular brain barriers that limit immune cell and mediator accessibility to specific compartments at the borders of the CNS. CNS immune privilege is established by a brain barriers anatomy resembling the architecture of a medieval castle surrounded by two walls bordering a castle moat. Built for protection and defense this two-walled rampart at the outer perimeter of the CNS parenchyma allows for accommodation of different immune cell subsets and efficient monitoring of potential danger signals derived from inside or outside of the CNS parenchyma. It enables effective mounting of immune responses within the subarachnoid or perivascular spaces, while leaving the CNS parenchyma relatively undisturbed. In this study, we propose that CNS immune privilege rests on the proper function of the brain barriers, which allow for CNS immune surveillance but prohibit activation of immune responses from the CNS parenchyma unless it is directly injured.


Asunto(s)
Sistema Nervioso Central , Privilegio Inmunológico , Barrera Hematoencefálica/fisiología , Encéfalo , Humanos
14.
Neuropathol Appl Neurobiol ; 48(4): e12789, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34935179

RESUMEN

The brain is protected by the endothelial blood-brain barrier (BBB) that limits the access of micro-organisms, tumour cells, immune cells and autoantibodies to the parenchyma. However, the classic model of disease spread across a disrupted BBB does not explain the focal distribution of lesions seen in a variety of neurological diseases and why lesions are frequently adjacent to the cerebrospinal fluid (CSF) spaces. We have critically reviewed the possible role of a blood-CSF-brain route as a disease entry pathway into the brain parenchyma. The initial step of this pathway is the transfer of pathogens or immune components from the blood into the CSF at the choroid plexuses, where the blood-CSF barrier (BCSFB) is located. The flow of CSF results in disease dissemination throughout the CSF spaces. Access to the brain parenchyma from the CSF can then occur across the ependymal layer at the ventricular surface or across the pial-glial barrier of the subarachnoid space and the Virchow-Robin spaces. We have reviewed the anatomy and physiology of the blood-CSF-brain pathway and the brain barriers controlling this process. We then summarised the evidence supporting this brain entry route in a cross-section of neurological diseases including neuromyelitis optica, multiple sclerosis, neurosarcoidosis, neuropsychiatric lupus, cryptococcal infection and both solid and haematological tumours. This summary highlights the conditions that share the blood-CSF-brain pathway as a pathogenetic mechanism. These include the characteristic proximity of lesions to CSF, evidence of disruption of the brain barriers and the identification of significant pathology within the CSF. An improved understanding of pathological transfer through the CSF and across all brain barriers will inform on more effective and targeted treatments of primary and secondary diseases of the central nervous system.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Transporte Biológico/fisiología , Encéfalo/metabolismo , Sistema Nervioso Central , Plexo Coroideo
15.
Nature ; 596(7870): 38-40, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34285399
16.
Handb Exp Pharmacol ; 273: 295-329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33237504

RESUMEN

Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.


Asunto(s)
Esclerosis Múltiple , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo
17.
Nat Immunol ; 10(5): 514-23, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19305396

RESUMEN

Interleukin 17-producing T helper cells (T(H)-17 cells) are important in experimental autoimmune encephalomyelitis, but their route of entry into the central nervous system (CNS) and their contribution relative to that of other effector T cells remain to be determined. Here we found that mice lacking CCR6, a chemokine receptor characteristic of T(H)-17 cells, developed T(H)-17 responses but were highly resistant to the induction of experimental autoimmune encephalomyelitis. Disease susceptibility was reconstituted by transfer of wild-type T cells that entered into the CNS before disease onset and triggered massive CCR6-independent recruitment of effector T cells across activated parenchymal vessels. The CCR6 ligand CCL20 was constitutively expressed in epithelial cells of choroid plexus in mice and humans. Our results identify distinct molecular requirements and ports of lymphocyte entry into uninflamed versus inflamed CNS and suggest that the CCR6-CCL20 axis in the choroid plexus controls immune surveillance of the CNS.


Asunto(s)
Plexo Coroideo/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-17/inmunología , Receptores CCR6/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular/inmunología , Quimiocina CCL20 , Quimiotaxis de Leucocito/inmunología , Plexo Coroideo/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Vigilancia Inmunológica , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Receptores CCR6/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo
18.
J Autoimmun ; 119: 102610, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621930

RESUMEN

CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.


Asunto(s)
Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Quimiotaxis de Leucocito/inmunología , Histona Desacetilasa 1/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Animales , Biomarcadores , Adhesión Celular , Quimiotaxis de Leucocito/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/diagnóstico , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Endoteliales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histona Desacetilasa 1/genética , Inmunohistoquímica , Inflamación/diagnóstico , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados
19.
Bioconjug Chem ; 32(3): 541-552, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33621057

RESUMEN

Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 µm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.


Asunto(s)
Avidina/química , Biotina/química , Nanopartículas/química , Polímeros/química , Linfocitos T/química , Animales , Barrera Hematoencefálica , Humanos , Ratones
20.
FASEB J ; 34(12): 16693-16715, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124083

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier (BBB) models established to date lack expression of key adhesion molecules involved in immune cell migration across the BBB in vivo. Here, we introduce the extended endothelial cell culture method (EECM), which differentiates hiPSC-derived endothelial progenitor cells to brain microvascular endothelial cell (BMEC)-like cells with good barrier properties and mature tight junctions. Importantly, EECM-BMEC-like cells exhibited constitutive cell surface expression of ICAM-1, ICAM-2, and E-selectin. Pro-inflammatory cytokine stimulation increased the cell surface expression of ICAM-1 and induced cell surface expression of P-selectin and VCAM-1. Co-culture of EECM-BMEC-like cells with hiPSC-derived smooth muscle-like cells or their conditioned medium further increased the induction of VCAM-1. Functional expression of endothelial ICAM-1 and VCAM-1 was confirmed by T-cell interaction with EECM-BMEC-like cells. Taken together, we introduce the first hiPSC-derived BBB model that displays an adhesion molecule phenotype that is suitable for the study of immune cell interactions.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Comunicación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Adulto , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Persona de Mediana Edad , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA