Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(5): 8136-8150, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299561

RESUMEN

Relative intensity noise (RIN) can be used to characterize pulse-to-pulse energy variations of ultrafast lasers, and is a very important performance parameter when considering the suitability of a laser for an application. However, owing to a wide range of measurement and analysis techniques, comparison of RIN values is non-trivial. Here, we clearly layout a definition of RIN as a percentage value for ultrafast laser systems. Furthermore, we analytically describe how the RIN can be measured in the time and frequency domains, and reveal the conditions under which these two widely employed approaches are equivalent. Finally, we experimentally measure the RIN of an ultrafast supercontinuum laser to be 6.57% in the time domain and 6.98% in the frequency domain at 850 nm, and 17.06% in the time domain and 17.08% in the frequency domain at 1000 nm, thus demonstrating the expected strong agreement when the measurements and signal processing are performed appropriately.

2.
Opt Express ; 27(7): 10320-10331, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045176

RESUMEN

We demonstrate that the Relative Intensity Noise (RIN) of a supercontinuum source can be significantly reduced using the new concept of undertapering, where the fiber is tapered to a diameter that is smaller than the diameter that gives the shortest blue edge, which is typically regarded as the optimum. We show that undertapering allows to control the second zero dispersion wavelength and use it as a soliton barrier to stop the redshifting solitons at a pre-defined wavelength, and thereby strongly reduce the RIN. We demonstrate how undertapering can reduce the spectrally averaged RIN in the optical coherence tomography bands, 500-800nm and 1150-1450nm, by more than a factor two.

3.
Sci Rep ; 8(1): 6579, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700316

RESUMEN

Supercontinuum (SC) generated with all-normal dispersion (ANDi) fibers has been of special interest in recent years due to its potentially superior coherence properties when compared to anomalous dispersion-pumped SC. However, care must be taken in the design of such sources since too long pump pulses and fiber length has been demonstrated to degrade the coherence. To assess the noise performance of ANDi fiber SC generation numerically, a scalar single-polarization model has so far been used, thereby excluding important sources of noise, such as polarization modulational instability (PMI). In this work we numerically study the influence of pump power, pulse length and fiber length on coherence and relative intensity noise (RIN), taking into account both polarization components in a standard ANDi fiber for SC generation pumped at 1064 nm. We demonstrate that the PMI introduces a power dependence not found in a scalar model, which means that even with short ~120 fs pump pulses the coherence of ANDi SC can be degraded at reasonable power levels above ~40 kW. We further demonstrate how the PMI significantly decreases the pump pulse length and fiber length at which the coherence of the ANDi SC is degraded. The numerical predictions are confirmed by RIN measurements of fs-pumped ANDi fiber SC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA