Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 596-614.e14, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508232

RESUMEN

Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología , Linfocitos T/inmunología , Biomarcadores de Tumor/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromosomas Humanos Par 9/genética , Estudios de Cohortes , Ciclina D1/genética , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Amplificación de Genes , Humanos , Evasión Inmune/efectos de los fármacos , Análisis Multivariante , Mutación/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple/genética , Receptores CCR5/metabolismo , Linfocitos T/efectos de los fármacos , Carga Tumoral/genética
2.
Cell ; 162(5): 1127-39, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26279190

RESUMEN

The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.


Asunto(s)
Vasos Sanguíneos/metabolismo , Macrófagos/metabolismo , Nervios Periféricos/fisiología , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Hipoxia de la Célula , Células Endoteliales/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Neovascularización Fisiológica , Ratas , Ratas Sprague-Dawley , Regeneración , Factor A de Crecimiento Endotelial Vascular/genética
3.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344248

RESUMEN

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Asunto(s)
Linfocitos B/citología , Linaje de la Célula/inmunología , Células Progenitoras Linfoides/citología , Células Mieloides/citología , Células Precursoras de Linfocitos B/citología , Linfocitos T/citología , Animales , Separación Celular , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Timo/citología
4.
Nature ; 557(7703): 112-117, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695863

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC) is required for optimal gene activation and prevention of cell death upon activation of immune receptors, including TNFR1 1 . Deficiency in the LUBAC components SHARPIN or HOIP in mice results in severe inflammation in adulthood or embryonic lethality, respectively, owing to deregulation of TNFR1-mediated cell death2-8. In humans, deficiency in the third LUBAC component HOIL-1 causes autoimmunity and inflammatory disease, similar to HOIP deficiency, whereas HOIL-1 deficiency in mice was reported to cause no overt phenotype9-11. Here we show, by creating HOIL-1-deficient mice, that HOIL-1 is as essential for LUBAC function as HOIP, albeit for different reasons: whereas HOIP is the catalytically active component of LUBAC, HOIL-1 is required for LUBAC assembly, stability and optimal retention in the TNFR1 signalling complex, thereby preventing aberrant cell death. Both HOIL-1 and HOIP prevent embryonic lethality at mid-gestation by interfering with aberrant TNFR1-mediated endothelial cell death, which only partially depends on RIPK1 kinase activity. Co-deletion of caspase-8 with RIPK3 or MLKL prevents cell death in Hoil-1-/- (also known as Rbck1-/-) embryos, yet only the combined loss of caspase-8 with MLKL results in viable HOIL-1-deficient mice. Notably, triple-knockout Ripk3-/-Casp8-/-Hoil-1-/- embryos die at late gestation owing to haematopoietic defects that are rescued by co-deletion of RIPK1 but not MLKL. Collectively, these results demonstrate that both HOIP and HOIL-1 are essential LUBAC components and are required for embryogenesis by preventing aberrant cell death. Furthermore, they reveal that when LUBAC and caspase-8 are absent, RIPK3 prevents RIPK1 from inducing embryonic lethality by causing defects in fetal haematopoiesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Muerte Celular , Desarrollo Embrionario , Hematopoyesis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular/genética , Pérdida del Embrión/genética , Desarrollo Embrionario/genética , Células Endoteliales/citología , Femenino , Hematopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
5.
J Immunol ; 206(11): 2725-2739, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34021046

RESUMEN

Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor-biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.


Asunto(s)
Linfocitos/inmunología , MicroARNs/inmunología , Animales , Células HEK293 , Homeostasis , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética
6.
PLoS Pathog ; 13(8): e1006524, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837697

RESUMEN

Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness.


Asunto(s)
Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/patogenicidad , Sarcoma de Kaposi/virología , Microambiente Tumoral/fisiología , Virulencia/fisiología , Western Blotting , Línea Celular , Exoma/fisiología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiología , Humanos , MicroARNs/genética , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Sarcoma de Kaposi/metabolismo
7.
Dev Biol ; 424(2): 236-245, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28189604

RESUMEN

Hematopoietic stem cells (HSCs) emerge during development via an endothelial-to-hematopoietic transition from hemogenic endothelium of the dorsal aorta (DA). Using in situ hybridization and analysis of a knock-in RedStar reporter, we show that the transcriptional regulator Hhex is expressed in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene expression in the emerging HSC. We identify an evolutionarily conserved non-coding region (ECR) in the Hhex locus with the capacity to bind the hematopoietic-affiliated transcriptional regulators Gata2, SCL, Fli1, Pu.1 and Ets1/2. This region is sufficient to drive the expression of a transgenic GFP reporter in the DA endothelium and intra-aortic hematopoietic clusters. GFP-positive AGM cells co-expressed HSC-associated markers c-Kit, CD34, VE-Cadherin, and CD45, and were capable of multipotential differentiation and long term engraftment when transplanted into myelo-ablated recipients. The Hhex ECR was also sufficient to drive expression at additional blood sites including the yolk sac blood islands, fetal liver, vitelline and umbilical arteries and the adult bone marrow, suggesting a common mechanism for Hhex regulation throughout ontogenesis of the blood system. To explore the physiological requirement for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate a requirement for this region in the adult HSC compartment. Taken together, our results identified the ECR region as an enhancer both necessary and sufficient for gene expression in HSC development and homeostasis. The Hhex ECR thus appears to be a core node for the convergence of the transcription factor network that governs the emergence of HSCs.


Asunto(s)
Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Compartimento Celular , Linaje de la Célula/genética , Ensayo de Unidades Formadoras de Colonias , Secuencia Conservada/genética , Embrión de Mamíferos/metabolismo , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética
8.
Dev Biol ; 411(2): 277-286, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26851695

RESUMEN

We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transactivadores/genética , Secuencia de Aminoácidos , Animales , Antígenos CD34/metabolismo , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Sangre Fetal/citología , Citometría de Flujo , Regulación Leucémica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Datos de Secuencia Molecular , Síndromes Mielodisplásicos/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Células Madre/citología , Transactivadores/metabolismo , Dedos de Zinc
9.
Blood ; 125(13): 2075-8, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25655602

RESUMEN

Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer; however, its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias. Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, acute deletion of Jarid1b from bone marrow increased peripheral blood T cells and, following secondary transplantation, resulted in loss of bone marrow reconstitution. Our results reveal that deletion of Jarid1b compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential.


Asunto(s)
Proliferación Celular/genética , Proteínas de Unión al ADN/fisiología , Células Madre Hematopoyéticas/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Animales , Diferenciación Celular/genética , División Celular/genética , Proteínas de Unión al ADN/genética , Hematopoyesis/genética , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Ratones , Ratones Noqueados
10.
Nature ; 469(7330): 356-61, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21160474

RESUMEN

Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.


Asunto(s)
Células Clonales/patología , Variación Genética/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Células Clonales/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Genotipo , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Proteínas de Fusión Oncogénica/genética
11.
PLoS Pathog ; 10(9): e1004400, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255370

RESUMEN

Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/fisiología , MicroARNs/genética , Sarcoma de Kaposi/metabolismo , Aerobiosis , Western Blotting , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/virología , Proliferación Celular , Células Endoteliales/patología , Células Endoteliales/virología , Endotelio Vascular/patología , Endotelio Vascular/virología , Metabolismo Energético , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/virología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/virología , Consumo de Oxígeno , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Células Tumorales Cultivadas , Virión/metabolismo , Latencia del Virus
12.
Blood ; 124(1): 96-105, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24825861

RESUMEN

The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ null(c) (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Microambiente Tumoral/fisiología , Adulto , Animales , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Citometría de Flujo , Supervivencia de Injerto , Xenoinjertos , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Trasplante de Neoplasias/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
13.
Stem Cells ; 33(3): 699-712, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25377420

RESUMEN

Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.


Asunto(s)
Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/biosíntesis , Células Madre Pluripotentes/fisiología , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transfección
14.
Blood ; 121(19): 3838-42, S1-15, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23509159

RESUMEN

In an attempt to discover novel growth factors for hematopoietic stem and progenitor cells (HSPCs), we have assessed cytokine responses of cord blood (CB)-derived CD34(+) cells in a high-content growth factor screen. We identify the immunoregulatory chemokine (C-C motif) ligand 28 (CCL28) as a novel growth factor that directly stimulates proliferation of primitive hematopoietic cells from different ontogenetic origins. CCL28 enhances the functional progenitor cell content of cultured cells by stimulating cell cycling and induces gene expression changes associated with survival. Importantly, addition of CCL28 to cultures of purified putative hematopoietic stem cells (HSCs) significantly increases the ability of the cells to long-term repopulate immunodeficient mice compared with equivalent input numbers of fresh cells. Together, our findings identify CCL28 as a potent growth-promoting factor with the ability to support the in vitro and in vivo functional properties of cultured human hematopoietic cells.


Asunto(s)
Proliferación Celular , Quimiocinas CC/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/fisiología
15.
Blood ; 122(10): 1741-5, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23894152

RESUMEN

Local hypoxia in hematopoietic stem cell (HSC) niches is thought to regulate HSC functions. Hypoxia-inducible factor-1 (Hif-1) and Hif-2 are key mediators of cellular responses to hypoxia. Although oxygen-regulated α-subunits of Hifs, namely Hif-1α and Hif-2α, are closely related, they play overlapping and also distinct functions in nonhematopoietic tissues. Although Hif-1α-deficient HSCs lose their activity on serial transplantation, the role for Hif-2α in cell-autonomous HSC maintenance remains unknown. Here, we demonstrate that constitutive or inducible hematopoiesis-specific Hif-2α deletion does not affect HSC numbers and steady-state hematopoiesis. Furthermore, using serial transplantations and 5-fluorouracil treatment, we demonstrate that HSCs do not require Hif-2α to self-renew and recover after hematopoietic injury. Finally, we show that Hif-1α deletion has no major impact on steady-state maintenance of Hif-2α-deficient HSCs and their ability to repopulate primary recipients, indicating that Hif-1α expression does not account for normal behavior of Hif-2α-deficient HSCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Femenino , Eliminación de Gen , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Masculino , Ratones
16.
Nature ; 462(7273): 587-94, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19956253

RESUMEN

The ability to produce stem cells by induced pluripotency (iPS reprogramming) has rekindled an interest in earlier studies showing that transcription factors can directly convert specialized cells from one lineage to another. Lineage reprogramming has become a powerful tool to study cell fate choice during differentiation, akin to inducing mutations for the discovery of gene functions. The lessons learnt provide a rubric for how cells may be manipulated for therapeutic purposes.


Asunto(s)
Linaje de la Célula/fisiología , Reprogramación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Redes Reguladoras de Genes/fisiología , Humanos , Células Madre Pluripotentes/citología
18.
PLoS Comput Biol ; 9(8): e1003197, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990771

RESUMEN

Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.


Asunto(s)
Diferenciación Celular/genética , Biología Computacional/métodos , Regulación de la Expresión Génica , Modelos Biológicos , Análisis por Conglomerados , Simulación por Computador , Factor de Transcripción GATA2/biosíntesis , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interleucina-3/biosíntesis , Interleucina-3/genética , Interleucina-3/metabolismo , Modelos Estadísticos , Método de Montecarlo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Procesos Estocásticos
19.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748792

RESUMEN

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Proteína del Locus del Complejo MDS1 y EV11 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Humanos , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Unión Proteica , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Blood ; 117(15): 4008-11, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21343609

RESUMEN

Induced pluripotent stem (iPS) cells offer a unique potential for understanding the molecular basis of disease and development. Here we have generated several human iPS cell lines, and we describe their pluripotent phenotype and ability to differentiate into erythroid cells, monocytes, and endothelial cells. More significantly, however, when these iPS cells were differentiated under conditions that promote lympho-hematopoiesis from human embryonic stem cells, we observed the formation of pre-B cells. These cells were CD45(+)CD19(+)CD10(+) and were positive for transcripts Pax5, IL7αR, λ-like, and VpreB receptor. Although they were negative for surface IgM and CD5 expression, iPS-derived CD45(+)CD19(+) cells also exhibited multiple genomic D-J(H) rearrangements, which supports a pre-B-cell identity. We therefore have been able to demonstrate, for the first time, that human iPS cells are able to undergo hematopoiesis that contributes to the B-cell lymphoid lineage.


Asunto(s)
Linfocitos B/citología , Linfopoyesis/fisiología , Células Madre Pluripotentes/citología , Células Precursoras de Linfocitos B/citología , Adulto , Antígenos CD19/metabolismo , Linfocitos B/fisiología , Línea Celular , Linaje de la Célula/inmunología , Humanos , Inmunoglobulina de Cadenas Ligeras Subrogadas/genética , Inmunofenotipificación , Antígenos Comunes de Leucocito/metabolismo , Neprilisina/metabolismo , Factor de Transcripción PAX5/genética , Células Madre Pluripotentes/fisiología , Células Precursoras de Linfocitos B/fisiología , Receptores de Interleucina-7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA