Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 21(5): 514-517, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35210586

RESUMEN

Ultrafast manipulation of magnetism bears great potential for future information technologies. While demagnetization in ferromagnets is governed by the dissipation of angular momentum1-3, materials with multiple spin sublattices, for example antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4f magnetic exchange is mediated indirectly through the conduction electrons4 (the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction), and the effect of such conditions on direct spin transfer processes is largely unexplored. Here, we investigate ultrafast magnetization dynamics in 4f antiferromagnets and systematically vary the 4f occupation, thereby altering the magnitude of the RKKY coupling energy. By combining time-resolved soft X-ray diffraction with ab initio calculations, we find that the rate of direct transfer between opposing moments is directly determined by this coupling. Given the high sensitivity of RKKY to the conduction electrons, our results offer a useful approach for fine tuning the speed of magnetic devices.

2.
Scand J Rheumatol ; 51(3): 214-219, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35048784

RESUMEN

OBJECTIVE: Increased soluble levels of complement effectors have been demonstrated in active anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), but the timing of complement activation in the autoimmune inflammation remains elusive. This study investigated whether the complement system is activated before onset of symptoms in AAV. METHOD: The Swedish National Patient Register and Cause of Death register were linked to registers of five biobanks to identify individuals sampled before AAV symptom onset. Diagnosis of AAV and time-point for symptom onset were confirmed by reviewing medical records. We identified 64 presymptomatic individuals with serum samples > 1 month < 10 years from AAV symptom onset and 122 matched controls. Complement factors (C2, C5) and activation markers (C5a, C4b) were measured using Luminex technology. RESULTS: Presymptomatic individuals had higher levels of C5 up to 6.5 years before symptom onset, compared with controls [median (IQR) 80.7 (131.9) vs 46.6 (63.4) µg/mL, p = 0.05]. Levels of C5a increased significantly during the pre-dating time (p = 0.033) until symptom onset. The complement levels were significantly higher in presymptomatic myeloperoxidase (MPO)-ANCA+ individuals versus MPO-ANCA- and proteinase-3-ANCA+ individuals. C5 was significantly increased in cases with renal involvement at diagnosis versus controls (p = 0.022), whereas levels of both C5 and C5a were significantly increased in presymptomatic individuals diagnosed with microscopic polyangiitis after onset compared with controls (C5: p = 0.027; C5a: p = 0.027). CONCLUSION: Activation of the complement system is an early event in the pathogenesis of AAV and is mainly associated with MPO-ANCA+ AAV and with microscopic polyangiitis.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Poliangitis Microscópica , Anticuerpos Anticitoplasma de Neutrófilos , Bancos de Muestras Biológicas , Activación de Complemento , Humanos , Mieloblastina , Peroxidasa , Suecia/epidemiología
3.
Phys Rev Lett ; 125(18): 186401, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33196259

RESUMEN

The coexistence of charge density wave (CDW) and superconductivity in tantalum disulfide (2H-TaS_{2}) at low temperature is boosted by applying hydrostatic pressures to study both vibrational and magnetic transport properties. Around P_{c}, we observe a superconducting dome with a maximum superconducting transition temperature T_{c}=9.1 K. First-principles calculations of the electronic structure predict that, under ambient conditions, the undistorted structure is characterized by a phonon instability at finite momentum close to the experimental CDW wave vector. Upon compression, this instability is found to disappear, indicating the suppression of CDW order. The calculations reveal an electronic topological transition (ETT), which occurs before the suppression of the phonon instability, suggesting that the ETT alone is not directly causing the structural change in the system. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods. While a d wave and single-gap BCS prediction cannot describe the lower critical field H_{c1} data, the temperature dependence of the H_{c1} can be well described by a single-gap anisotropic s-wave order parameter.

4.
Mol Ecol ; 26(9): 2591-2604, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28173637

RESUMEN

Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small 'dust seeds' which after germination develop 'seedlings' that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism-mutualism continuum, both among and within species. Previous studies on plant-fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism-mutualism continuum.


Asunto(s)
Ericaceae/microbiología , Germinación , Micorrizas , Plantones/microbiología , Ericaceae/fisiología , Plantones/fisiología , Simbiosis
5.
Epidemiol Infect ; 145(10): 2166-2175, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28511741

RESUMEN

Methods for the detection of influenza epidemics and prediction of their progress have seldom been comparatively evaluated using prospective designs. This study aimed to perform a prospective comparative trial of algorithms for the detection and prediction of increased local influenza activity. Data on clinical influenza diagnoses recorded by physicians and syndromic data from a telenursing service were used. Five detection and three prediction algorithms previously evaluated in public health settings were calibrated and then evaluated over 3 years. When applied on diagnostic data, only detection using the Serfling regression method and prediction using the non-adaptive log-linear regression method showed acceptable performances during winter influenza seasons. For the syndromic data, none of the detection algorithms displayed a satisfactory performance, while non-adaptive log-linear regression was the best performing prediction method. We conclude that evidence was found for that available algorithms for influenza detection and prediction display satisfactory performance when applied on local diagnostic data during winter influenza seasons. When applied on local syndromic data, the evaluated algorithms did not display consistent performance. Further evaluations and research on combination of methods of these types in public health information infrastructures for 'nowcasting' (integrated detection and prediction) of influenza activity are warranted.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población/métodos , Algoritmos , Humanos , Gripe Humana/virología , Estudios Prospectivos , Análisis de Regresión , Estaciones del Año , Suecia/epidemiología
6.
Phys Rev Lett ; 116(21): 217202, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27284671

RESUMEN

By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions.

7.
J Chem Phys ; 143(16): 164701, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26520537

RESUMEN

Semiconducting nanocrystals (NCs) have become one of the leading materials in a variety of applications, mainly due to their size tunable band gap and high intensity emission. Their photoluminescence (PL) properties can be notably improved by capping the nanocrystals with a shell of another semiconductor, making core-shell structures. We focus our study on the CdS/ZnS core-shell nanocrystals that are closely related to extensively studied CdSe/CdS NCs, albeit exhibiting rather different photoluminescence properties. We employ density functional theory to investigate the changes in the electronic and optical properties of these nanocrystals with size, core/shell ratio, and interface structure between the core and the shell. We have found that both the lowest unoccupied eigenstate (LUES) and the highest occupied eigenstate (HOES) wavefunction (WF) are localized in the core of the NCs, with the distribution of the LUES WF being more sensitive to the size and the core/shell ratio. We show that the radiative lifetimes are increasing, and the Coulomb interaction energies decrease with increasing NC size. Furthermore, we investigated the electronic and optical properties of the NCs with different interfaces between the core and the shell and different core types. We find that the different interfaces and core types have rather small influence on the band gaps and the absorption indexes, as well as on the confinement of the HOES and LUES WFs. Also the radiative lifetimes are found to be only slightly influenced by the different structural models. In addition, we compare these results with the previous results for CdSe/CdS NCs, reflecting the different PL properties of these two types of NCs. We argue that the difference in their Coulomb interaction energies is one of the main reasons for their distinct PL properties.

8.
Euro Surveill ; 19(46)2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25425514

RESUMEN

Syndromic data sources have been sought to improve the timely detection of increased influenza transmission. This study set out to examine the prospective performance of telenursing chief complaints in predicting influenza activity. Data from two influenza seasons (2007/08 and 2008/09) were collected in a Swedish county (population 427,000) to retrospectively determine which grouping of telenursing chief complaints had the largest correlation with influenza case rates. This grouping was prospectively evaluated in the three subsequent seasons. The best performing telenursing complaint grouping in the retrospective algorithm calibration was fever (child, adult) and syncope (r=0.66; p<0.001). In the prospective evaluation, the performance of 14-day predictions was acceptable for the part of the evaluation period including the 2009 influenza pandemic (area under the curve (AUC)=0.84; positive predictive value (PPV)=0.58), while it was strong (AUC=0.89; PPV=0.93) for the remaining evaluation period including only influenza winter seasons. We recommend the use of telenursing complaints for predicting winter influenza seasons. The method requires adjustments when used during pandemics.


Asunto(s)
Sistemas de Información en Salud , Gripe Humana/epidemiología , Vigilancia de la Población/métodos , Teleenfermería , Adulto , Algoritmos , Área Bajo la Curva , Niño , Brotes de Enfermedades , Fiebre/etiología , Humanos , Incidencia , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Pandemias , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estudios Retrospectivos , Estaciones del Año , Suecia/epidemiología
9.
J Phys Condens Matter ; 36(38)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38848725

RESUMEN

We report on the stabilization of ferromagnetic skyrmions in zero external magnetic fields, in exchange-biased systems composed of ferromagnetic-antiferromagnetic (FM-AFM) bilayers. By performing atomistic spin dynamics simulations, we study cases of compensated, uncompensated, and partly uncompensated FM-AFM interfaces, and investigate the impact of important parameters such as temperature, inter-plane exchange interaction, Dzyaloshinskii-Moriya interaction, and magnetic anisotropy on the skyrmions appearance and stability. The model with an uncompensated FM-AFM interface leads to the stabilization of individual skyrmions and skyrmion lattices in the FM layer, caused by the effective field from the AFM instead of an external magnetic field. Similarly, in the case of a fully compensated FM-AFM interface, we show that FM skyrmions can be stabilized. We also demonstrate that accounting for interface roughness leads to stabilization of skyrmions both in compensated and uncompensated interface. Moreover, in bilayers with a rough interface, skyrmions in the FM layer are observed for a wide range of exchange interaction values through the FM-AFM interface, and the chirality of the skyrmions depends critically on the exchange interaction.

10.
Sci Rep ; 14(1): 8138, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584162

RESUMEN

Despite decades of research, the role of the lattice and its coupling to the magnetisation during ultrafast demagnetisation processes is still not fully understood. Here we report on studies of both explicit and implicit lattice effects on laser induced ultrafast demagnetisation of bcc Fe and fcc Co. We do this using atomistic spin- and lattice dynamics simulations following a heat-conserving three-temperature model. We show that this type of Langevin-based simulation is able to reproduce observed trends of the ultrafast magnetization dynamics of fcc Co and bcc Fe. The parameters used in our models are all obtained from electronic structure theory, with the exception of the lattice dynamics damping term, where a range of parameters were investigated. It was found that while the explicit spin-lattice coupling in the studied systems does not impact the demagnetisation process notably, the lattice damping has a large influence on the details of the magnetization dynamics. The dynamics of Fe and Co following the absorption of a femtosecond laser pulse are compared with previous results for Ni and similarities and differences in the materials' behavior are analysed. For all elements investigated so far with this model, we obtain a linear relationship between the value of the maximally demagnetized state and the fluence of the laser pulse , which is in agreement with experiments. Moreover, we demonstrate that the demagnetization amplitude is largest for Ni and smallest for Co. This holds over a wide range of the reported electron-phonon couplings, and this demagnetization trend is in agreement with recent experiments.

11.
Phys Rev Lett ; 111(12): 127204, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-24093297

RESUMEN

We derive ab inito exchange parameters for general noncollinear magnetic configurations, in terms of a multiple scattering formalism. We show that the general exchange formula has an anisotropiclike term even in the absence of spin-orbit coupling, and that this term is large, for instance, for collinear configuration in bcc Fe, whereas for fcc Ni it is quite small. We demonstrate that keeping this term leads to what one should consider a biquadratic effective spin Hamiltonian even in the case of collinear arrangement. In noncollinear systems this term results in new tensor elements that are important for exchange interactions at finite temperatures, but they have less importance at low temperature. To illustrate our results in practice, we calculate for bcc Fe magnon spectra obtained from configuration-dependent exchange parameters, where the configurations are determined by finite-temperature effects. Our theory results in the same quantitative results as the finite-temperature neutron scattering experiments.

12.
Phys Rev Lett ; 111(9): 097201, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033065

RESUMEN

We report high-resolution hard x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of Mn doping. Supported by theoretical calculations we identify, for both low (1%) and high (13%) Mn doping values, the electronic character of the states near the top of the valence band. Magnetization and temperature-dependent core-level photoemission spectra reveal how the delocalized character of the Mn states enables the bulk ferromagnetic properties of (Ga,Mn)As.

13.
J Chem Phys ; 138(23): 234701, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23802970

RESUMEN

Using Near Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy, the thickness dependent formation of Lutetium Phthalocyanine (LuPc2) films on a stepped passivated Si(100)2×1 reconstructed surface was studied. Density functional theory (DFT) calculations were employed to gain detailed insights into the electronic structure. Photoelectron spectroscopy measurements have not revealed any noticeable interaction of LuPc2 with the H-passivated Si surface. The presented study can be considered to give a comprehensive description of the LuPc2 molecular electronic structure. The DFT calculations reveal the interaction of the two molecular rings with each other and with the metallic center forming new kinds of orbitals in between the phthalocyanine rings, which allows to better understand the experimentally obtained NEXAFS results.

14.
Phys Rev Lett ; 108(5): 057202, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400955

RESUMEN

We propose a general theoretical framework for ultrafast laser-induced spin dynamics in multisublattice magnets. We distinguish relaxation of relativistic and exchange origin and show that when the former dominates, nonequivalent sublattices have distinct dynamics despite their strong exchange coupling. Even more interesting, in the exchange dominated regime sublattices can show highly counterintuitive transitions between parallel and antiparallel alignment. This allows us to explain recent experiments with antiferromagnetically coupled sublattices, and predict that such transitions are possible with ferromagnetic coupling as well. In addition, we predict that exchange relaxation enhances the demagnetization speed of both sublattices only when they are antiferromagnetically coupled.

15.
Phys Rev Lett ; 109(2): 026101, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-23030182

RESUMEN

A very rich Fe-C phase diagram makes the formation of graphene on iron surfaces a challenging task. Here we demonstrate that the growth of graphene on epitaxial iron films can be realized by chemical vapor deposition at relatively low temperatures, and that the formation of carbides can be avoided in excess of the carbon-containing precursors. The resulting graphene monolayer creates a novel periodically corrugated pattern on Fe(110). Using low-energy electron microscopy and scanning tunneling microscopy, we show that it is modulated in one dimension forming long waves with a period of ∼4 nm parallel to the [001] direction of the substrate, with an additional height modulation along the wave crests. The observed topography of the graphene/Fe superstructure is well reproduced by density functional theory calculations, and found to result from a unique combination of the lattice mismatch and strong interfacial interaction, as probed by core-level photoemission and x-ray absorption spectroscopy.

16.
Nanotechnology ; 23(50): 505501, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23183126

RESUMEN

Graphene is a two-dimensional material with a capability of gas sensing, which is here shown to be drastically improved by inducing gentle disorder in the lattice. We report that by using a focused ion beam technique, controlled disorder can be introduced into the graphene structure through Ga(+) ion irradiation. This disorder leads to an increase in the electrical response of graphene to NO(2) gas molecules by a factor of three in an ambient environment (air). Ab initio density functional calculations indicate that NO(2) molecules bind strongly to Stone-Wales defects, where they modify electronic states close to the Fermi level, which in turn influence the transport properties. The demonstrated gas sensor, utilizing structurally defected graphene, shows faster response, higher conductivity changes and thus higher sensitivity to NO(2) as compared to pristine graphene.

17.
Nucl Med Biol ; 92: 65-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32387114

RESUMEN

The understanding of metabolic disease and diabetes on a molecular level has increased significantly due to the recent advances in molecular biology and biotechnology. However, in vitro studies and animal models do not always translate to the human disease, perhaps illustrated by the failure of many drug candidates in the clinical phase. Non-invasive biomedical imaging techniques such as Positron Emission Tomography (PET) offer tools for direct visualization and quantification of molecular processes in humans. Developments in this area potentially enable longitudinal in vivo studies of receptors and processes involved in diabetes guiding drug development and diagnosis in the near future. This mini-review focuses on describing the overall perspective of how PET can be used to increase our understanding and improve treatment of diabetes. The methodological aspects and future developments and challenges are highlighted.


Asunto(s)
Diabetes Mellitus/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Diabetes Mellitus/metabolismo , Humanos , Radiofármacos
18.
Phys Rev Lett ; 104(11): 117601, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20366500

RESUMEN

High-resolution photoemission spectroscopy and ab initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing host electron density. The effective multiorbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.

19.
Nature ; 406(6793): 280-2, 2000 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-10917524

RESUMEN

Certain materials have an electrical conductivity that is extremely sensitive to an applied magnetic field; this phenomenon, termed 'giant magnetoresistance', can be used in sensor applications. Typically, such a device comprises several ferromagnetic layers, separated by non-magnetic spacer layer(s)--a so-called 'super-lattice' geometry. In the absence of a magnetic field, the ferromagnetic layers may be magnetized in opposite directions by interlayer exchange coupling, while an applied external magnetic field causes the magnetization directions to become parallel. Because the resistivity depends on the magnetization direction, an applied field that changes the magnetic configuration may be detected simply by measuring the change in resistance. In order to detect weak fields, the energy difference between different magnetization directions should be small; this is usually achieved by using many non-magnetic atomic spacer layers. Here we show, using first-principles theory, that materials combinations such as Fe/V/Co multilayers can produce a non-collinear magnetic state in which the magnetization direction between Fe and Co layers differs by about 90 degrees. This state is energetically almost degenerate with the collinear magnetic states, even though the number of non-magnetic vanadium spacer layers is quite small.

20.
Sci Rep ; 10(1): 20339, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230155

RESUMEN

We have derived an expression of the Dzyaloshinskii-Moriya interaction (DMI), where all the three components of the DMI vector can be calculated independently, for a general, non-collinear magnetic configuration. The formalism is implemented in a real space-linear muffin-tin orbital-atomic sphere approximation (RS-LMTO-ASA) method. We have chosen the Cr triangular trimer on Au(111) and Mn triangular trimers on Ag(111) and Au(111) surfaces as numerical examples. The results show that the DMI (module and direction) is drastically different between collinear and non-collinear states. Based on the relation between the spin and charge currents flowing in the system and their coupling to the non-collinear magnetic configuration of the triangular trimer, we demonstrate that the DMI interaction can be significant, even in the absence of spin-orbit coupling. This is shown to emanate from the non-collinear magnetic structure, that can induce significant spin and charge currents even with spin-orbit coupling is ignored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA