Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127979

RESUMEN

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Genómica , Neoplasias Encefálicas/patología
2.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147389

RESUMEN

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
3.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009395

RESUMEN

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Anciano , Frecuencia Cardíaca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología
4.
Stroke ; 54(11): 2853-2863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37814955

RESUMEN

BACKGROUND: Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease. METHODS: Using data from the BLSA (Baltimore Longitudinal Study of Aging; n=886; 2009-2020), BEC-enriched proteins were identified among 7268 plasma proteins (measured with SomaScanv4.1) using an automated annotation algorithm that filtered endothelial cell transcripts followed by cross-referencing with BEC-specific transcripts reported in single-cell RNA-sequencing studies. To identify BEC-enriched proteins in plasma most relevant to the maintenance of neurological and neurovascular health, we selected proteins significantly associated with 3T magnetic resonance imaging-defined white matter lesion volumes. We then examined how these candidate BEC biomarkers related to white matter lesion volumes, cerebral microhemorrhages, and lacunar infarcts in the ARIC study (Atherosclerosis Risk in Communities; US multisite; 1990-2017). Finally, we determined whether these candidate BEC biomarkers, when measured during midlife, were related to dementia risk over a 25-year follow-up period. RESULTS: Of the 28 proteins identified as BEC-enriched, 4 were significantly associated with white matter lesion volumes (CDH5 [cadherin 5], CD93 [cluster of differentiation 93], ICAM2 [intracellular adhesion molecule 2], GP1BB [glycoprotein 1b platelet subunit beta]), while another approached significance (RSPO3 [R-Spondin 3]). A composite score based on 3 of these BEC proteins accounted for 11% of variation in white matter lesion volumes in BLSA participants. We replicated the associations between the BEC composite score, CDH5, and RSPO3 with white matter lesion volumes in ARIC, and further demonstrated that the BEC composite score and RSPO3 were associated with the presence of ≥1 cerebral microhemorrhages. We also showed that the BEC composite score, CDH5, and RSPO3 were associated with 25-year dementia risk. CONCLUSIONS: In addition to identifying BEC proteins in plasma that relate to cerebral small vessel disease and dementia risk, we developed a composite score of plasma BEC proteins that may be used to estimate blood-brain barrier integrity and risk for adverse neurovascular outcomes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Humanos , Células Endoteliales/patología , Estudios Longitudinales , Encéfalo/patología , Biomarcadores/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Imagen por Resonancia Magnética
5.
Neuroimage ; 272: 120048, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958620

RESUMEN

The cerebellum is involved in higher-order cognitive functions, e.g., learning and memory, and is susceptible to age-related atrophy. Yet, the cerebellum's role in age-related cognitive decline remains largely unknown. We investigated cross-sectional and longitudinal associations between cerebellar volume and verbal learning and memory. Linear mixed effects models and partial correlations were used to examine the relationship between changes in cerebellum volumes (total cerebellum, cerebellum white matter [WM], cerebellum hemisphere gray matter [GM], and cerebellum vermis subregions) and changes in verbal learning and memory performance among 549 Baltimore Longitudinal Study of Aging participants (2,292 visits). All models were adjusted by baseline demographic characteristics (age, sex, race, education), and APOE e4 carrier status. In examining associations between change with change, we tested an additional model that included either hippocampal (HC), cuneus, or postcentral gyrus (PoCG) volumes to assess whether cerebellar volumes were uniquely associated with verbal learning and memory. Cross-sectionally, the association of baseline cerebellum GM and WM with baseline verbal learning and memory was age-dependent, with the oldest individuals showing the strongest association between volume and performance. Baseline volume was not significantly associated with change in learning and memory. However, analysis of associations between change in volumes and changes in verbal learning and memory showed that greater declines in verbal memory were associated with greater volume loss in cerebellum white matter, and preserved GM volume in cerebellum vermis lobules VI-VII. The association between decline in verbal memory and decline in cerebellar WM volume remained after adjustment for HC, cuneus, and PoCG volume. Our findings highlight that associations between cerebellum volume and verbal learning and memory are age-dependent and regionally specific.


Asunto(s)
Cerebelo , Cognición , Humanos , Estudios Longitudinales , Estudios Transversales , Cerebelo/diagnóstico por imagen , Aprendizaje Verbal , Imagen por Resonancia Magnética
6.
Neuroimage ; 280: 120346, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634885

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Teorema de Bayes , Estudio de Asociación del Genoma Completo , Transcriptoma , Encéfalo/diagnóstico por imagen , Corteza Entorrinal
7.
Neuroimage ; 269: 119911, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731813

RESUMEN

To learn multiscale functional connectivity patterns of the aging brain, we built a brain age prediction model of functional connectivity measures at seven scales on a large fMRI dataset, consisting of resting-state fMRI scans of 4186 individuals with a wide age range (22 to 97 years, with an average of 63) from five cohorts. We computed multiscale functional connectivity measures of individual subjects using a personalized functional network computational method, harmonized the functional connectivity measures of subjects from multiple datasets in order to build a functional brain age model, and finally evaluated how functional brain age gap correlated with cognitive measures of individual subjects. Our study has revealed that functional connectivity measures at multiple scales were more informative than those at any single scale for the brain age prediction, the data harmonization significantly improved the brain age prediction performance, and the data harmonization in the functional connectivity measures' tangent space worked better than in their original space. Moreover, brain age gap scores of individual subjects derived from the brain age prediction model were significantly correlated with clinical and cognitive measures. Overall, these results demonstrated that multiscale functional connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for characterizing the aging brain and the derived brain age gap was associated with cognitive and clinical measures.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Aprendizaje , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos
8.
Hum Brain Mapp ; 44(3): 1118-1128, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36346213

RESUMEN

Machine learning has been increasingly applied to neuroimaging data to predict age, deriving a personalized biomarker with potential clinical applications. The scientific and clinical value of these models depends on their applicability to independently acquired scans from diverse sources. Accordingly, we evaluated the generalizability of two brain age models that were trained across the lifespan by applying them to three distinct early-life samples with participants aged 8-22 years. These models were chosen based on the size and diversity of their training data, but they also differed greatly in their processing methods and predictive algorithms. Specifically, one brain age model was built by applying gradient tree boosting (GTB) to extracted features of cortical thickness, surface area, and brain volume. The other model applied a 2D convolutional neural network (DBN) to minimally preprocessed slices of T1-weighted scans. Additional model variants were created to understand how generalizability changed when each model was trained with data that became more similar to the test samples in terms of age and acquisition protocols. Our results illustrated numerous trade-offs. The GTB predictions were relatively more accurate overall and yielded more reliable predictions when applied to lower quality scans. In contrast, the DBN displayed the most utility in detecting associations between brain age gaps and cognitive functioning. Broadly speaking, the largest limitations affecting generalizability were acquisition protocol differences and biased brain age estimates. If such confounds could eventually be removed without post-hoc corrections, brain age predictions may have greater utility as personalized biomarkers of healthy aging.


Asunto(s)
Benchmarking , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Longevidad
9.
Biometrics ; 79(3): 2417-2429, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35731973

RESUMEN

A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.


Asunto(s)
Malaria Cerebral , Niño , Humanos , Malaria Cerebral/diagnóstico por imagen , Malaria Cerebral/patología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
10.
BMC Psychiatry ; 23(1): 59, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690972

RESUMEN

BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Estudios Prospectivos , Reproducibilidad de los Resultados , Encéfalo , Neuroimagen , Imagen por Resonancia Magnética/métodos , Inteligencia Artificial
11.
J Magn Reson Imaging ; 55(3): 908-916, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34564904

RESUMEN

BACKGROUND: In the medical imaging domain, deep learning-based methods have yet to see widespread clinical adoption, in part due to limited generalization performance across different imaging devices and acquisition protocols. The deviation between estimated brain age and biological age is an established biomarker of brain health and such models may benefit from increased cross-site generalizability. PURPOSE: To develop and evaluate a deep learning-based image harmonization method to improve cross-site generalizability of deep learning age prediction. STUDY TYPE: Retrospective. POPULATION: Eight thousand eight hundred and seventy-six subjects from six sites. Harmonization models were trained using all subjects. Age prediction models were trained using 2739 subjects from a single site and tested using the remaining 6137 subjects from various other sites. FIELD STRENGTH/SEQUENCE: Brain imaging with magnetization prepared rapid acquisition with gradient echo or spoiled gradient echo sequences at 1.5 T and 3 T. ASSESSMENT: StarGAN v2, was used to perform a canonical mapping from diverse datasets to a reference domain to reduce site-based variation while preserving semantic information. Generalization performance of deep learning age prediction was evaluated using harmonized, histogram matched, and unharmonized data. STATISTICAL TESTS: Mean absolute error (MAE) and Pearson correlation between estimated age and biological age quantified the performance of the age prediction model. RESULTS: Our results indicated a substantial improvement in age prediction in out-of-sample data, with the overall MAE improving from 15.81 (±0.21) years to 11.86 (±0.11) with histogram matching to 7.21 (±0.22) years with generative adversarial network (GAN)-based harmonization. In the multisite case, across the 5 out-of-sample sites, MAE improved from 9.78 (±6.69) years to 7.74 (±3.03) years with histogram normalization to 5.32 (±4.07) years with GAN-based harmonization. DATA CONCLUSION: While further research is needed, GAN-based medical image harmonization appears to be a promising tool for improving cross-site deep learning generalization. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Aprendizaje Profundo , Adolescente , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Proyectos de Investigación , Estudios Retrospectivos
12.
Alzheimers Dement ; 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35779250

RESUMEN

BACKGROUND: High blood pressure (BP) is a risk factor for late-life brain health; however, the association of elevated BP with brain health in mid-life is unclear. METHODS: We identified 661 participants from the Coronary Artery Risk Development in Young Adults Study (age 18-30 at baseline) with 30 years of follow-up and brain magnetic resonance imaging at year 30. Cumulative exposure of BP was estimated by time-weighted averages (TWA). Ideal cardiovascular health was defined as systolic BP < 120 mm Hg, diastolic BP < 80 mm Hg. Brain age was calculated using previously validated high dimensional machine learning pattern analyses. RESULTS: Every 5 mmHg increment in TWA systolic BP was associated with approximately 1-year greater brain age (95% confidence interval [CI]: 0.50-1.36) Participants with TWA systolic or diastolic BP over the recommended guidelines for ideal cardiovascular health, had on average 3-year greater brain age (95% CI: 1.00-4.67; 95% CI: 1.45-5.13, respectively). CONCLUSION: Elevated BP from early to mid adulthood, even below clinical cut-offs, is associated with advanced brain aging in mid-life.

13.
Alzheimers Dement ; 18(12): 2428-2437, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35142033

RESUMEN

OBJECTIVE: To examine longitudinal race and sex differences in mid-life brain health and to evaluate whether cardiovascular health (CVH) or apolipoprotein E (APOE) ε4 explain differences. METHODS: The study included 478 Black and White participants (mean age: 50 years). Total (TBV), gray (GMV), white (WMV), and white matter hyperintensity (WMH) volumes and GM-cerebral blood flow (CBF) were acquired with 3T-magnetic resonance imaging at baseline and 5-year follow-up. Analyses were based on general linear models. RESULTS: There were race x sex interactions for GMV (P-interaction = .004) and CBF (P-interaction = .01) such that men showed more decline than women, and this was most evident in Blacks. Blacks compared to Whites had a significantly greater increase in WMH (P = .002). All sex-race differences in change were marginally attenuated by CVH and APOE ε4. CONCLUSION: Race-sex differences in brain health emerge by mid-life. Identifying new environmental factors beyond CVH is needed to develop early interventions to maintain brain health.


Asunto(s)
Cardias , Sustancia Blanca , Humanos , Femenino , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Apolipoproteína E4 , Calidad de Vida , Sustancia Blanca/diagnóstico por imagen
14.
J Neurosci ; 40(6): 1265-1275, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31896669

RESUMEN

Adolescence is a time of extensive neural restructuring, leaving one susceptible to atypical development. Although neural maturation in humans can be measured using functional and structural MRI, the subtle patterns associated with the initial stages of abnormal change may be difficult to identify, particularly at an individual level. Brain age prediction models may have utility in assessing brain development in an individualized manner, as deviations between chronological age and predicted brain age could reflect one's divergence from typical development. Here, we built a support vector regression model to summarize high-dimensional neuroimaging as an index of brain age in both sexes. Using structural and functional MRI data from two large pediatric datasets and a third clinical dataset, we produced and validated a two-dimensional neural maturation index (NMI) that characterizes typical brain maturation patterns and identifies those who deviate from this trajectory. Examination of brain signatures associated with NMI scores revealed that elevated scores were related to significantly lower gray matter volume and significantly higher white matter volume, particularly in high-order regions such as the prefrontal cortex. Additionally, those with higher NMI scores exhibited enhanced connectivity in several functional brain networks, including the default mode network. Analysis of data from a sample of male and female patients with schizophrenia revealed an association between advanced NMI scores and schizophrenia diagnosis in participants aged 16-22, confirming the NMI's utility as a marker of atypicality. Altogether, our findings support the NMI as an individualized, interpretable measure by which neural development in adolescence may be assessed.SIGNIFICANCE STATEMENT The substantial neural restructuring that occurs during adolescence increases one's vulnerability to aberration. A brain index that is capable of capturing one's conformance with typical development will allow for individualized assessment and enhance our understanding of typical and atypical development. In this analysis, we produce a neural maturation index (NMI) using support vector regression and a large pediatric sample. This index generalizes across multiple cohorts and shows potential in the identification of clinical groups. We also implement a novel method for examining the developmental trajectory through data-driven analysis. The signatures identified by the NMI reflect key stages of the extensive neural development that occurs during adolescence and support its utility as a metric of typical brain development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Esquizofrenia/diagnóstico por imagen , Máquina de Vectores de Soporte , Adolescente , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
15.
Stroke ; 52(11): 3419-3426, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455822

RESUMEN

Background and Purpose: Randomized patent foramen ovale closure trials have used open-label end point ascertainment which increases the risk of bias and undermines confidence in the conclusions. The Gore REDUCE trial prospectively performed baseline and follow-up magnetic resonance imaging (MRIs) for all subjects providing an objective measure of the effectiveness of closure. Methods: We performed blinded evaluations of the presence, location, and volume of new infarct on diffusion-weighted imaging of recurrent clinical stroke or new infarct (>3 mm) on T2/fluid attenuated inversion recovery from baseline to follow-up MRI at 2 years, comparing closure to medical therapy alone. We also examined the effect of shunt size and the development of atrial fibrillation on infarct burden at follow-up. Results: At follow-up, new clinical stroke or silent MRI infarct occurred in 18/383 (4.7%) patients who underwent closure and 19/177 (10.7%) medication-only patients (relative risk, 0.44 [95% CI, 0.24­0.81], P=0.02). Clinical strokes were less common in closure patients compared with medically treated patients, 5 (1.3%) versus 12 (6.8%), P=0.001, while silent MRI infarcts were similar, 13 (3.4%) versus 7 (4.0%), P=0.81. There were no differences in number, volumes, and distribution of new infarct comparing closure patients to those treated with medication alone. There were also no differences of number, volumes, and distribution comparing silent infarcts to clinical strokes. Infarct burden was also similar for patients who developed atrial fibrillation and for those with large shunts. Conclusions: The REDUCE trial demonstrates that patent foramen ovale closure prevents recurrent brain infarction based on the objective outcome of new infarcts on MRI. Only clinical strokes were reduced by closure while silent infarctions were similar between study arms, and there were no differences in infarct volume or location comparing silent infarcts to clinical strokes. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00738894.


Asunto(s)
Infarto Encefálico/epidemiología , Infarto Encefálico/patología , Foramen Oval Permeable/complicaciones , Foramen Oval Permeable/cirugía , Infarto Encefálico/etiología , Humanos , Incidencia , Imagen por Resonancia Magnética
16.
Brain ; 143(3): 1027-1038, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32103250

RESUMEN

Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = -0.201, P = 0.016) but not in Subtype 2 (r = -0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = -1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = -0.167, df = 277, P = 0.868), antipsychotic dose (t = -0.439, df = 210, P = 0.521), age of illness onset (t = -1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.


Asunto(s)
Sustancia Gris/patología , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto , Atrofia/patología , Encéfalo/patología , Estudios de Casos y Controles , Escolaridad , Femenino , Humanos , Hipertrofia/patología , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Esquizofrenia/líquido cefalorraquídeo , Adulto Joven
17.
Brain ; 143(7): 2312-2324, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32591831

RESUMEN

Deep learning has emerged as a powerful approach to constructing imaging signatures of normal brain ageing as well as of various neuropathological processes associated with brain diseases. In particular, MRI-derived brain age has been used as a comprehensive biomarker of brain health that can identify both advanced and resilient ageing individuals via deviations from typical brain ageing. Imaging signatures of various brain diseases, including schizophrenia and Alzheimer's disease, have also been identified using machine learning. Prior efforts to derive these indices have been hampered by the need for sophisticated and not easily reproducible processing steps, by insufficiently powered or diversified samples from which typical brain ageing trajectories were derived, and by limited reproducibility across populations and MRI scanners. Herein, we develop and test a sophisticated deep brain network (DeepBrainNet) using a large (n = 11 729) set of MRI scans from a highly diversified cohort spanning different studies, scanners, ages and geographic locations around the world. Tests using both cross-validation and a separate replication cohort of 2739 individuals indicate that DeepBrainNet obtains robust brain-age estimates from these diverse datasets without the need for specialized image data preparation and processing. Furthermore, we show evidence that moderately fit brain ageing models may provide brain age estimates that are most discriminant of individuals with pathologies. This is not unexpected as tightly-fitting brain age models naturally produce brain-age estimates that offer little information beyond age, and loosely fitting models may contain a lot of noise. Our results offer some experimental evidence against commonly pursued tightly-fitting models. We show that the moderately fitting brain age models obtain significantly higher differentiation compared to tightly-fitting models in two of the four disease groups tested. Critically, we demonstrate that leveraging DeepBrainNet, along with transfer learning, allows us to construct more accurate classifiers of several brain diseases, compared to directly training classifiers on patient versus healthy control datasets or using common imaging databases such as ImageNet. We, therefore, derive a domain-specific deep network likely to reduce the need for application-specific adaptation and tuning of generic deep learning networks. We made the DeepBrainNet model freely available to the community for MRI-based evaluation of brain health in the general population and over the lifespan.


Asunto(s)
Envejecimiento , Encefalopatías/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Neuroimagen/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Longevidad , Imagen por Resonancia Magnética , Masculino
18.
Neuroradiology ; 63(6): 913-924, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33404789

RESUMEN

PURPOSE: Hypertension is a risk factor for cognitive impairment; however, the mechanisms leading to cognitive changes remain unclear. In this cross-sectional study, we evaluate the impact of white matter lesion (WML) burden on brain functional connectivity (FC) and cognition in a large cohort of hypertensive patients from the Systolic Blood Pressure Intervention Trial (SPRINT) at baseline. METHODS: Functional networks were identified from baseline resting state functional MRI scans of 660 SPRINT participants using independent component analysis. WML volumes were calculated from structural MRI. Correlation analyses were carried out between mean FC of each functional network and global WML as well as WML within atlas-defined white matter regions. For networks of interest, voxel-wise-adjusted correlation analyses between FC and regional WML volume were performed. Multiple variable linear regression models were built for cognitive test performance as a function of network FC, followed by mediation analysis. RESULTS: Mean FC of the default mode network (DMN) was negatively correlated with global WML volume, and regional WML volume within the precuneus. Voxel-wise correlation analyses revealed that regional WML was negatively correlated with FC of the DMN's left lateral temporal region. FC in this region of the DMN was positively correlated to performance on the Montreal Cognitive Assessment and demonstrated significant mediation effects. Additional networks also demonstrated global and regional WML correlations; however, they did not demonstrate an association with cognition. CONCLUSION: In hypertensive patients, greater WML volume is associated with lower FC of the DMN, which in turn is related to poorer cognitive test performance. TRIAL REGISTRATION: NCT01206062.


Asunto(s)
Hipertensión , Sustancia Blanca , Presión Sanguínea , Encéfalo/diagnóstico por imagen , Cognición , Estudios Transversales , Humanos , Hipertensión/diagnóstico por imagen , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen
19.
Alzheimers Dement ; 17(1): 89-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920988

RESUMEN

INTRODUCTION: Relationships between brain atrophy patterns of typical aging and Alzheimer's disease (AD), white matter disease, cognition, and AD neuropathology were investigated via machine learning in a large harmonized magnetic resonance imaging database (11 studies; 10,216 subjects). METHODS: Three brain signatures were calculated: Brain-age, AD-like neurodegeneration, and white matter hyperintensities (WMHs). Brain Charts measured and displayed the relationships of these signatures to cognition and molecular biomarkers of AD. RESULTS: WMHs were associated with advanced brain aging, AD-like atrophy, poorer cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cognitively normal (CN) subjects. High WMH volume was associated with brain aging and cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were associated with doubling the likelihood of amyloid beta (Aß) positivity after age 65. Brain aging, AD-like atrophy, and WMHs were better predictors of cognition than chronological age in MCI/AD. DISCUSSION: A Brain Chart quantifying brain-aging trajectories was established, enabling the systematic evaluation of individuals' brain-aging patterns relative to this large consortium.


Asunto(s)
Envejecimiento/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/crecimiento & desarrollo , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Atrofia , Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Disfunción Cognitiva , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Sustancia Blanca/patología , Adulto Joven
20.
Neuroimage ; 223: 117248, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32860881

RESUMEN

Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Programas Informáticos , Adulto , Anciano , Algoritmos , Femenino , Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Tamaño de los Órganos , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA