Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(5): e0169323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563763

RESUMEN

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Asunto(s)
Vacunas contra la COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos , Vacuna Antisarampión/inmunología , Vacuna Antisarampión/genética , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
2.
J Virol ; 98(5): e0176223, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563762

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Chlorocebus aethiops , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Vacunas contra la COVID-19/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vectores Genéticos , Células Vero , Pandemias/prevención & control , Femenino , Betacoronavirus/inmunología , Betacoronavirus/genética , Neumonía Viral/prevención & control , Neumonía Viral/virología , Neumonía Viral/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Modelos Animales de Enfermedad
3.
J Biol Chem ; 298(1): 101290, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678315

RESUMEN

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Límite de Detección , Proteínas de la Nucleocápside/inmunología
4.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259646

RESUMEN

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Pandemias , Paris/epidemiología , Estudios Seroepidemiológicos , Factores de Tiempo
5.
Emerg Infect Dis ; 26(12): 3069-3071, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32788033

RESUMEN

In March 2020, a severe respiratory syndrome developed in a cat, 1 week after its owner received positive test results for severe acute respiratory syndrome coronavirus 2. Viral RNA was detected in the cat's nasopharyngeal swab samples and vomitus or feces; immunoglobulin against the virus was found in convalescent-phase serum. Human-to-cat transmission is suspected.


Asunto(s)
COVID-19/veterinaria , Gatos , Animales , Bélgica , COVID-19/diagnóstico , COVID-19/transmisión , Femenino , Humanos , Zoonosis Virales
6.
J Virol ; 89(23): 12131-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401036

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. IMPORTANCE: Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal model for this infection impedes the development of a preventive vaccine and pathogenesis studies. In seeking to establish a small primate model for HCV, we first attempted to generate recombinants between HCV and GB virus B (GBV-B), a hepacivirus that infects small New World primates (tamarins and marmosets). This approach revealed that the genetic distance between these hepaciviruses likely prevented virus morphogenesis. We next showed that HCV pseudoparticles were able to infect tamarin or marmoset hepatocytes efficiently, demonstrating that there was no restriction in HCV entry into these simian cells. Furthermore, we found that a highly cell culture-adapted HCV strain was able to achieve a complete viral cycle in primary marmoset hepatocyte cultures, providing a promising basis for further HCV adaptation to small primate hosts.


Asunto(s)
Virus GB-B/fisiología , Hepacivirus/fisiología , Estadios del Ciclo de Vida/fisiología , Modelos Animales , Primates/virología , Internalización del Virus , Animales , Secuencia de Bases , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Células HEK293 , Hepacivirus/genética , Hepatocitos/virología , Especificidad del Huésped , Humanos , Immunoblotting , Datos de Secuencia Molecular , Plásmidos/genética , Análisis de Secuencia de ADN , Viremia
7.
PLoS Pathog ; 9(10): e1003678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098125

RESUMEN

Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Antivirales/farmacología , Virus Chikungunya/metabolismo , Inmunidad Innata/efectos de los fármacos , Pirimidinas/biosíntesis , Infecciones por Alphavirus/tratamiento farmacológico , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/inmunología , Animales , Antivirales/química , Fiebre Chikungunya , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Chlorocebus aethiops , Células HeLa , Humanos , Inmunidad Innata/inmunología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 1 Regulador del Interferón/metabolismo , Pirimidinas/inmunología , Células Vero
8.
J Virol ; 86(14): 7577-87, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22553325

RESUMEN

Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.


Asunto(s)
Resfriado Común/virología , Coronavirus Humano 229E/patogenicidad , Efecto Citopatogénico Viral , Células Dendríticas/virología , Monocitos/virología , Mucosa Respiratoria/virología , Antígenos CD34/análisis , Antígenos CD13/análisis , Caspasas/metabolismo , Muerte Celular , Coronavirus Humano 229E/fisiología , Células Dendríticas/patología , Proteína Ligando Fas/metabolismo , Células Gigantes/patología , Células Gigantes/virología , Humanos , Monocitos/inmunología , Monocitos/patología , Mucosa Respiratoria/citología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral
9.
Cells ; 12(11)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37296595

RESUMEN

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Cricetulus , Membrana Celular , Células CHO
10.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805620

RESUMEN

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Ensayo de Inmunoadsorción Enzimática , Túnez/epidemiología , Anticuerpos Antivirales
11.
J Virol ; 85(20): 10582-97, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775467

RESUMEN

Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Acrecentamiento Dependiente de Anticuerpo , Linfocitos/virología , Glicoproteínas de Membrana/metabolismo , Receptores de IgG/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteasas de Cisteína , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus
12.
PLoS One ; 17(11): e0277827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36409702

RESUMEN

Studies on the humoral response to homologous BNT162b2 mRNA-vaccination focus mainly on IgG antibody dynamics, while long-term IgA kinetics are understudied. Herein, kinetics of IgG and IgA levels against trimeric-Spike (S) and Receptor-Binding-Domain (RBD) were evaluated by in-house ELISAs in 146 two-dose vaccinated Greek healthcare workers (HCWs) in a 9-month period at six time points (up to 270 days after the first dose). The effect of a homologous booster third dose was also studied and evaluated. The peak of immune response was observed 21 days after the second dose; 100% seroconversion rate for anti-S and anti-RBD IgG, and 99.7% and 96.3% respectively for IgA. IgG antibody levels displayed higher increase compared to IgA. Declining but persistent anti-SARS-CoV-2 antibody levels were detected 9 months after vaccination; IgG and IgA anti-S levels approached those after the first dose, while a more rapid reduction rate for anti-RBD antibodies led to significantly lower levels for both classes, supporting the need for a booster dose. Indeed, a homologous booster third dose resulted in enhanced levels of anti-S of both classes, whereas anti-RBD didn't exceed the peak levels after the second dose. Previous SARS-CoV-2 infection, flu vaccination, BMI<35 and the occurrence of an adverse event upon vaccination, were associated with higher IgG antibody levels over time, which however were negatively affected by age increase and the presence of chronic diseases. Overall, after concurrently using the S and RBD target-antigens in in-house ELISAs, we report in addition to IgG, long-term persistence of IgA antibodies. Regarding antibody levels, homologous mRNA vaccination gives rise to an effective anti-viral protection up to 9 months negatively correlated to age. Considering that COVID-19 is still a matter of public concern, booster vaccine doses remain critical to vulnerable individuals.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , ARN Mensajero , Grecia , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Personal de Salud
13.
EBioMedicine ; 75: 103810, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35045362

RESUMEN

BACKGROUND: V591 (TMV-083) is a live recombinant measles vector-based vaccine candidate expressing a pre-fusion stabilized SARS-CoV-2 spike protein. METHODS: We performed a randomized, placebo-controlled Phase I trial with an unblinded dose escalation and a double-blind treatment phase at 2 sites in France and Belgium to evaluate the safety and immunogenicity of V591. Ninety healthy SARS-CoV-2 sero-negative adults (18-55 years of age) were randomized into 3 cohorts, each comprising 24 vaccinees and 6 placebo recipients. Participants received two intramuscular injections of a low dose vaccine (1 × 105 median Tissue Culture Infectious Dose [TCID50]), one or two injections of a high dose vaccine (1 × 106 TCID50), or placebo with a 28 day interval. Safety was assessed by solicited and unsolicited adverse events. Immunogenicity was measured by SARS-CoV-2 spike protein-binding antibodies, neutralizing antibodies, spike-specific T cell responses, and anti-measles antibodies. ClinicalTrials.gov, NCT04497298. FINDINGS: Between Aug 10 and Oct 13, 2020, 148 volunteers were screened of whom 90 were randomized. V591 showed a good safety profile at both dose levels. No serious adverse events were reported. At least one treatment-related adverse event was reported by 15 (20.8%) participants receiving V591 vs. 6 (33.3%) of participants receiving placebo. Eighty-one percent of participants receiving two injections of V591 developed spike-binding antibodies after the second injection. However, neutralizing antibodies were detectable on day 56 only in 17% of participants receiving the low dose and 61% receiving the high dose (2 injections). Spike-specific T cell responses were not detected. Pre-existing anti-measles immunity had a statistically significant impact on the immune response to V591, which was in contrast to previous results with the measles vector-based chikungunya vaccine. INTERPRETATION: While V591 was generally well tolerated, the immunogenicity was not sufficient to support further development. FUNDING: Themis Bioscience GmbH, a subsidiary of Merck & Co. Inc., Kenilworth, NJ, USA; Coalition for Epidemic Preparedness Innovations (CEPI).


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , Vectores Genéticos , Inmunogenicidad Vacunal , Virus del Sarampión , SARS-CoV-2/inmunología , Adolescente , Adulto , COVID-19/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética
14.
J Virol ; 84(22): 11634-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20826694

RESUMEN

The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Virus de la Encefalomiocarditis/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células CHO , Infecciones por Cardiovirus/virología , Línea Celular , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Transporte de Proteínas , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
15.
J Clin Virol Plus ; 1(4): 100041, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35262023

RESUMEN

Background: The systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, less is known about the mucosal responses in the upper airways, the site of initial SARS-CoV-2 replication. Methods: The IgG and IgA antibody responses were analysed in plasma and nasopharyngeal swabs from the first four confirmed COVID-19 patients in France. Two were pauci-symptomatic while two developed severe disease. We characterized their antibody profiles by using an in-house ELISA to detect antibodies directed against SARS-CoV-2 Nucleoprotein and Spike. Results: Anti-N IgG and IgA antibodies were detected in the NPS of severe patients only. The levels of antibodies in the plasma markedly differed amongst the patients. The most distinctive features are a strong anti-N IgG response in the severe patient who recovered, and a high anti-N IgA response specifically detected in the fatal case of COVID-19. Conclusions: Anti-N IgG and IgA antibodies are detected in NPS only for severe patients, with levels related to serological antibodies. The severe patients showed different antibody profiles in the plasma, notably regarding the IgA and IgG response to the N antigen, that may reflect different disease outcome. By contrast, pauci-symptomatic patients did not exhibit any mucosal antibodies in NSP, which is associated with a low or absent serological response against both N and S.

16.
Lancet Reg Health West Pac ; 13: 100197, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278365

RESUMEN

BACKGROUND: In 2020 Lao PDR had low reported COVID-19 cases but it was unclear whether this masked silent transmission. A seroprevalence study was done August - September 2020 to determine SARS-CoV-2 exposure. METHODS: Participants were from the general community (n=2433) or healthcare workers (n=666) in five provinces and bat/wildlife contacts (n=74) were from Vientiane province. ELISAs detected anti- SARS-CoV-2 Nucleoprotein (N; n=3173 tested) and Spike (S; n=1417 tested) antibodies. Double-positive samples were checked by IgM/IgG rapid tests. Controls were confirmed COVID-19 cases (n=15) and pre-COVID-19 samples (n=265). Seroprevalence for the general community was weighted to account for complex survey sample design, age and sex. FINDINGS: In pre-COVID-19 samples, 5·3%, [95% CI=3·1-8·7%] were anti-N antibody single-positive and 1·1% [0·3-3·5%] were anti-S antibody single positive. None were double positive. Anti-N and anti-S antibodies were detected in 5·2% [4·2-6·5%] and 2·1% [1·1-3·9%] of the general community, 2·0% [1·1-3·3%] and 1·4% [0·5-3·7%] of healthcare workers and 20·3% [12·6-31·0%] and 6·8% [2·8-15·3%] of bat/wildlife contacts. 0·1% [0·02-0·3%] were double positive for anti-N and anti-S antibodies (rapid test negative). INTERPRETATION: We find no evidence for significant SARS-CoV-2 circulation in Lao PDR before September 2020. This likely results from early decisive measures taken by the government, social behavior, and low population density. High anti-N /low anti-S seroprevalence in bat/wildlife contacts may indicate exposure to cross-reactive animal coronaviruses with threat of emerging novel viruses. FUNDING: Agence Française de Développement. Additional; Institut Pasteur du Laos, Institute Pasteur, Paris and Luxembourg Ministry of Foreign and European Affairs ("PaReCIDS II").

17.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33357418

RESUMEN

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Asunto(s)
Administración Intranasal/métodos , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Femenino , Vectores Genéticos , Inmunidad Mucosa , Inmunización Secundaria , Inmunoglobulina A/inmunología , Lentivirus/genética , Lentivirus/inmunología , Masculino , Ratones , Modelos Animales , Sistema Respiratorio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
18.
Nat Commun ; 12(1): 3025, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021152

RESUMEN

Assessment of the cumulative incidence of SARS-CoV-2 infections is critical for monitoring the course and extent of the COVID-19 epidemic. Here, we report estimated seroprevalence in the French population and the proportion of infected individuals who developed neutralising antibodies at three points throughout the first epidemic wave. Testing 11,000 residual specimens for anti-SARS-CoV-2 IgG and neutralising antibodies, we find nationwide seroprevalence of 0.41% (95% CI: 0.05-0.88) mid-March, 4.14% (95% CI: 3.31-4.99) mid-April and 4.93% (95% CI: 4.02-5.89) mid-May 2020. Approximately 70% of seropositive individuals have detectable neutralising antibodies. Infection fatality rate is 0.84% (95% CI: 0.70-1.03) and increases exponentially with age. These results confirm that the nationwide lockdown substantially curbed transmission and that the vast majority of the French population remained susceptible to SARS-CoV-2 in May 2020. Our study shows the progression of the first epidemic wave and provides a framework to inform the ongoing public health response as viral transmission continues globally.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , COVID-19/virología , Niño , Preescolar , Epidemias , Femenino , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Prevalencia , SARS-CoV-2/fisiología , Estudios Seroepidemiológicos , Adulto Joven
19.
Blood ; 112(9): 3713-22, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18698004

RESUMEN

Cross-presentation is a crucial mechanism in tumoral and microbial immunity because it allows internalized cell associated or exogenous antigens (Ags) to be delivered into the major histocompatibility complex I pathway. This pathway is important for the development of CD8(+) T-cell responses and for the induction of tolerance. In mice, cross-presentation is considered to be a unique property of CD8alpha+ conventional dendritic cells (DCs). Here we show that splenic plasmacytoid DCs (pDCs) efficiently capture exogenous Ags in vivo but are not able to cross-present these Ags at steady state. However, in vitro and in vivo stimulation by Toll-like receptor-7, or -9 or viruses licenses pDCs to cross-present soluble or particulate Ags by a transporter associated with antigen processing-dependent mechanism. Induction of cross-presentation confers to pDCs the ability to generate efficient effector CD8+ T-cell responses against exogenous Ags in vivo, showing that pDCs may play a crucial role in induction of adaptive immune responses against pathogens that do not infect tissues of hemopoietic origin. This study provides the first evidence for an in vivo role of splenic pDCs in Ag cross-presentation and T-cell cross-priming and suggests that pDCs may constitute an attractive target to boost the efficacy of vaccines based on cytotoxic T lymphocyte induction.


Asunto(s)
Presentación de Antígeno , Células Dendríticas/inmunología , Linfocitos T/inmunología , Receptores Toll-Like/metabolismo , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Virus de la Influenza A/inmunología , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nucleopoliedrovirus/inmunología , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología
20.
Sci Transl Med ; 12(559)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32817357

RESUMEN

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Prueba de COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Citometría de Flujo/métodos , Francia/epidemiología , Voluntarios Sanos , Humanos , Inmunoprecipitación/métodos , Luciferasas , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Investigación Biomédica Traslacional , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA