Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(6): 595-604, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38408845

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6, which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers. METHODS: XCI patterns of six mothers of male patients with DNAAF6-related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele. RESULTS: The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern. CONCLUSION: This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy.


Asunto(s)
Cilios , Inactivación del Cromosoma X , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Cilios/patología , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Metilación de ADN/genética , Dineínas/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Mutación , Fenotipo , Inactivación del Cromosoma X/genética
2.
Am J Hum Genet ; 106(2): 153-169, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978331

RESUMEN

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/etiología , Dineínas/metabolismo , Flagelos/patología , Mutación , Proteínas/genética , Cola del Espermatozoide/patología , Adulto , Axonema , Niño , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/patología , Dineínas/genética , Femenino , Flagelos/metabolismo , Homocigoto , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/patología , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Adulto Joven
3.
Reprod Biomed Online ; 47(5): 103328, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742467

RESUMEN

RESEARCH QUESTION: Do patients presenting with flagella ultrastructural defects as assessed by electron microscopy, and defined within three phenotypes (dysplasia of the fibrous sheath [DFS], primary flagellar dyskinesia [PFD] and non-specific flagellar abnormalities [NSFA]), have decreased chances of success in intracytoplasmic sperm injection (ICSI) or adverse obstetric and neonatal outcomes? DESIGN: Retrospective analysis of 189 ICSI cycles from 80 men with spermatozoa flagellum ultrastructural defects (DFS [n = 16]; PFD [n = 14]; NSFA [n = 50] compared with a control group (n = 97). Cycles were cumulatively analysed. All fresh and frozen embryo transfers resulting from each ICSI attempt were included. The effect of transmission electron microscopy (TEM) phenotype on the main ICSI outcomes was assessed by a multivariate logistic regression combined with a generalized linear mixed model to account for the non-independence of the observations. RESULTS: No predictive value of TEM phenotype was found on the main outcomes of ICSI, namely fertilization rates, pregnancy and delivery rates, and cumulative pregnancy and delivery rates. Cumulative pregnancy rates ranged from 29.0-43.3% in the different TEM phenotype subgroups compared with 36.8% in the control group. Cumulative live birth rates ranged from 24.6-36.7% compared with 31.4% in the control group. No increase was found in miscarriages, preterm births, low birth weights or birth abnormalities. CONCLUSIONS: Data on the cumulative chances of success in ICSI of patients with ultrastructural flagellar defects, a rare cause of male infertility often associated with an underlying genetic cause, are reassuring, as are obstetrical and neonatal outcomes in this population.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Embarazo , Recién Nacido , Femenino , Humanos , Masculino , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Estudios Retrospectivos , Semen , Infertilidad Masculina/terapia , Infertilidad Masculina/etiología , Índice de Embarazo , Microscopía Electrónica de Transmisión , Fertilización In Vitro
4.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30665704

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/fisiopatología , Proteínas de Microfilamentos/deficiencia , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas de Xenopus/deficiencia , Animales , Trastornos de la Motilidad Ciliar/patología , Modelos Animales de Enfermedad , Exones/genética , Femenino , Eliminación de Gen , Genes Letales , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Rotación , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
5.
Am J Hum Genet ; 105(1): 198-212, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178125

RESUMEN

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.


Asunto(s)
Astenozoospermia/complicaciones , Dineínas Axonemales/genética , Infertilidad Masculina/etiología , Mutación , Espermatozoides/patología , Adulto , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Linaje , Fenotipo , Espermatozoides/metabolismo
6.
J Hum Genet ; 67(7): 381-386, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35046476

RESUMEN

Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogeneous ciliopathy. Dysfunction of motile respiratory and nodal cilia results in sinopulmonary symptoms associated with laterality defects (LD) found in half of the patients. The molecular basis of the disease is insufficiently investigated in patients originating from the Arabian Peninsula. In a group of 16 unrelated Saudi patients clinically suspected of PCD and among whom only 5 (31%) had LD, we first screened by PCR-RFLP two founder mutations, RSPH9 c.804_806del and CCDC39 c.2190del previously identified in patients from the Arabian Peninsula and Tunisia, respectively. When negative, targeted panel or whole-exome sequencing was performed. Three patients were homozygous for the mutation in RSPH9, which encodes an axonemal protein that is absent from nodal cilia. None of the patients carried the CCDC39 founder mutation frequent in Tunisia. NGS analysis showed that nine patients had homozygous mutations in PCD genes. In total, sequential RFLP and NGS analysis solved 75% (12/16) of cases and identified ten distinct mutations, among which six are novel, in nine different genes. These results, which highlight the genetic heterogeneity of PCD in Saudi Arabia, show that the RSPH9 c.804_806del mutation is a prevalent mutation among Saudi patients, whereas the CCDC39 c.2190del ancestral allele is most likely related to the Berber population. This study shows that RSPH9 founder mutation first-line screening and NGS analysis is efficient for the genetic exploration of PCD in Saudi patients. The RSPH9 founder mutation accounts for the low rate of LD among Saudi patients.


Asunto(s)
Proteínas del Citoesqueleto , Síndrome de Kartagener , Proteínas del Citoesqueleto/genética , Efecto Fundador , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutación , Arabia Saudita
7.
Am J Hum Genet ; 103(6): 984-994, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30471717

RESUMEN

Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.


Asunto(s)
Dineínas Axonemales/genética , Cilios/genética , Dineínas/genética , Mutación/genética , Situs Inversus/genética , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Trastornos de la Motilidad Ciliar/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Sistema Respiratorio/patología , Alineación de Secuencia
8.
Eur Respir J ; 58(2)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33479112

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by mutations in approximately 50 cilia-related genes. PCD genotype-phenotype relationships have mostly arisen from small case series because existing statistical approaches to investigating relationships have been unsuitable for rare diseases. METHODS: We applied a topological data analysis (TDA) approach to investigate genotype-phenotype relationships in PCD. Data from separate training and validation cohorts included 396 genetically defined individuals carrying pathogenic variants in PCD genes. To develop the TDA models, 12 clinical and diagnostic variables were included. TDA-driven hypotheses were subsequently tested using traditional statistics. RESULTS: Disease severity at diagnosis, measured by forced expiratory volume in 1 s (FEV1) z-score, was significantly worse in individuals with CCDC39 mutations (compared to other gene mutations) and better in those with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients without neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with DNAH5 mutations were phenotypically diverse. Cilia ultrastructure and beat pattern defects correlated closely to specific causative gene groups, confirming these tests can be used to support a genetic diagnosis. CONCLUSIONS: This large scale, multi-national study presents PCD as a syndrome with overlapping symptoms and variations in phenotype according to genotype. TDA modelling confirmed genotype-phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 mutation) and identified new relationships, including FEV1 preservation with DNAH11 mutations and diversity of severity with DNAH5 mutations.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Cilios , Análisis de Datos , Genotipo , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutación , Fenotipo
9.
J Med Genet ; 57(4): 237-244, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31772028

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype. METHODS: We prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV). RESULTS: Sixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF. CONCLUSION: Quantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


Asunto(s)
Dineínas Axonemales/genética , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Adolescente , Adulto , Axonema/genética , Axonema/patología , Niño , Preescolar , Cilios/patología , Trastornos de la Motilidad Ciliar/diagnóstico por imagen , Trastornos de la Motilidad Ciliar/patología , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Microscopía por Video , Persona de Mediana Edad , Mutación/genética , Fenotipo , Adulto Joven
10.
Hum Mutat ; 41(1): 115-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469207

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disease of motile cilia. Even though PCD is widely studied, North-African patients have been rarely explored. In this study, we aim at confirming the clinical diagnosis and explore the genetic spectrum of PCD in a cohort of Tunisian patients. Forty clinically diagnosed patients with PCD belonging to 34 families were recruited from Tunisian pediatric departments. In each proband, targeted capture PCD panel sequencing of the 40 PCD genes was performed. PCD panel sequencing identified bi-allelic mutations in 82% of the families in eight PCD genes. Remarkably, 23.5% of patients carried the same c.2190del CCDC39 mutation. Single nucleotide polymorphism profiling in six unrelated patients carrying this mutation has revealed a founder effect in North-African patients. This mutation is estimated to date back at least 1,400-1,750 years ago. The identification of this major allele allowed us to suggest a cost-effective genetic diagnostic strategy in North-African patients with PCD.


Asunto(s)
Dineínas/genética , Predisposición Genética a la Enfermedad , Síndrome de Kartagener/epidemiología , Síndrome de Kartagener/genética , Mutación , Vigilancia de la Población , Alelos , Sustitución de Aminoácidos , Exones , Femenino , Genotipo , Humanos , Síndrome de Kartagener/diagnóstico , Masculino , Túnez/epidemiología
11.
Hum Mol Genet ; 27(2): 266-282, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29121203

RESUMEN

A child presenting with Mainzer-Saldino syndrome (MZSDS), characterized by renal, retinal and skeletal involvements, was also diagnosed with lung infections and airway ciliary dyskinesia. These manifestations suggested dysfunction of both primary and motile cilia, respectively. Targeted exome sequencing identified biallelic mutations in WDR19, encoding an IFT-A subunit previously associated with MZSDS-related chondrodysplasia, Jeune asphyxiating thoracic dysplasia and cranioectodermal dysplasia, linked to primary cilia dysfunction, and in TEKT1 which encodes tektin-1 an uncharacterized member of the tektin family, mutations of which may cause ciliary dyskinesia. Tektin-1 localizes at the centrosome in cycling cells, at basal bodies of both primary and motile cilia and to the axoneme of motile cilia in airway cells. The identified mutations impaired these localizations. In addition, airway cells from the affected individual showed severe motility defects without major ultrastructural changes. Knockdown of tekt1 in zebrafish resulted in phenotypes consistent with a function for tektin-1 in ciliary motility, which was confirmed by live imaging. Finally, experiments in the zebrafish also revealed a synergistic effect of tekt1 and wdr19. Altogether, our data show genetic interactions between WDR19 and TEKT1 likely contributing to the overall clinical phenotype observed in the affected individual and provide strong evidence for TEKT1 as a new candidate gene for primary ciliary dyskinesia.


Asunto(s)
Cilios/genética , Ciliopatías/genética , Proteínas de Microtúbulos/genética , Animales , Huesos/anomalías , Ataxia Cerebelosa/genética , Niño , Trastornos de la Motilidad Ciliar/genética , Ciliopatías/metabolismo , Craneosinostosis/genética , Proteínas del Citoesqueleto , Displasia Ectodérmica/genética , Exoma , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Microtúbulos/metabolismo , Mutación , Fenotipo , Proteínas/genética , Proteínas/metabolismo , Retinitis Pigmentosa/genética , Secuenciación del Exoma , Pez Cebra/genética
12.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365104

RESUMEN

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.


Asunto(s)
Adenilato Quinasa/genética , Trastornos de la Motilidad Ciliar/genética , Homocigoto , Infertilidad Masculina/genética , Mutación Missense , Cola del Espermatozoide , Adenilato Quinasa/metabolismo , Adulto , Trastornos de la Motilidad Ciliar/enzimología , Trastornos de la Motilidad Ciliar/patología , Humanos , Infertilidad Masculina/enzimología , Infertilidad Masculina/patología , Masculino
13.
Eur Respir J ; 55(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060067

RESUMEN

Primary ciliary dyskinesia (PCD) is a heterogeneous genetic condition. European and North American diagnostic guidelines recommend transmission electron microscopy (TEM) as one of a combination of tests to confirm a diagnosis. However, there is no definition of what constitutes a defect or consensus on reporting terminology. The aim of this project was to provide an internationally agreed ultrastructural classification for PCD diagnosis by TEM.A consensus guideline was developed by PCD electron microscopy experts representing 18 centres in 14 countries. An initial meeting and discussion were followed by a Delphi consensus process. The agreed guideline was then tested, modified and retested through exchange of samples and electron micrographs between the 18 diagnostic centres.The final guideline a) provides agreed terminology and a definition of Class 1 defects which are diagnostic for PCD; b) identifies Class 2 defects which can indicate a diagnosis of PCD in combination with other supporting evidence; c) describes features which should be included in a ciliary ultrastructure report to assist multidisciplinary diagnosis of PCD; and d) defines adequacy of a diagnostic sample.This tested and externally validated statement provides a clear guideline for the diagnosis of PCD by TEM which can be used to standardise diagnosis internationally.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Cilios , Ingestión de Alimentos , Humanos , Síndrome de Kartagener/diagnóstico , Microscopía Electrónica , Microscopía Electrónica de Transmisión
14.
J Transl Med ; 18(1): 136, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209102

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). METHODS: Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and ßIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. RESULTS: Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose-response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. CONCLUSION: The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.


Asunto(s)
Pólipos Nasales , Rinitis , Células Cultivadas , Enfermedad Crónica , Células Epiteliales , Humanos , Interleucina-6 , Mucosa Nasal , Pólipos Nasales/patología , Rinitis/complicaciones
15.
Am J Hum Genet ; 99(2): 489-500, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27486783

RESUMEN

Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Proteínas de Choque Térmico/genética , Infertilidad Masculina/genética , Mutación , Adolescente , Proteínas Reguladoras de la Apoptosis , Axonema/genética , Cilios/genética , Trastornos de la Motilidad Ciliar/patología , Exoma/genética , Femenino , Flagelos/genética , Flagelos/patología , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Homocigoto , Humanos , Infertilidad Masculina/patología , Síndrome de Kartagener/genética , Masculino , Persona de Mediana Edad , Chaperonas Moleculares , Mutación Missense/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Empalme del ARN/genética , Semen , Espermatozoides/metabolismo , Espermatozoides/patología
16.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893823

RESUMEN

Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air⁻liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose⁻response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Sistemas de Liberación de Medicamentos , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Nariz/citología , Receptores Fc/metabolismo , Transcitosis , Diferenciación Celular , Células HEK293 , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Am J Hum Genet ; 97(1): 153-62, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26073779

RESUMEN

Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive condition resulting from structural and/or functional defects of the axoneme in motile cilia and sperm flagella. The great majority of mutations identified so far involve genes whose defects result in dynein-arm anomalies. By contrast, PCD due to CC/RS defects (those in the central complex [CC] and radial spokes [RSs]), which might be difficult to diagnose, remains mostly unexplained. We identified non-ambiguous RSPH3 mutations in 5 of 48 independent families affected by CC/RS defects. RSPH3, whose ortholog in the flagellated alga Chlamydomonas reinhardtii encodes a RS-stalk protein, is mainly expressed in respiratory and testicular cells. Its protein product, which localizes within the cilia of respiratory epithelial cells, was undetectable in airway cells from an individual with RSPH3 mutations and in whom RSPH23 (a RS-neck protein) and RSPH1 and RSPH4A (RS-head proteins) were found to be still present within cilia. In the case of RSPH3 mutations, high-speed-videomicroscopy analyses revealed the coexistence of immotile cilia and motile cilia with movements of reduced amplitude. A striking feature of the ultrastructural phenotype associated with RSPH3 mutations is the near absence of detectable RSs in all cilia in combination with a variable proportion of cilia with CC defects. Overall, this study shows that RSPH3 mutations contribute to disease in more than 10% of PCD-affected individuals with CC/RS defects, thereby allowing an accurate diagnosis to be made in such cases. It also unveils the key role of RSPH3 in the proper building of RSs and the CC in humans.


Asunto(s)
Cilios/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Cilios/ultraestructura , Predisposición Genética a la Enfermedad , Humanos , Microscopía por Video
18.
PLoS Comput Biol ; 13(7): e1005605, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28708889

RESUMEN

Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.


Asunto(s)
Relojes Biológicos/fisiología , Cilios/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/fisiología , Moco/fisiología , Mucosa Respiratoria/fisiología , Transporte Biológico Activo/fisiología , Cilios/ultraestructura , Simulación por Computador , Humanos , Pulmón/citología , Microfluídica/métodos , Microscopía por Video/métodos , Microesferas , Modelos Biológicos , Depuración Mucociliar/fisiología , Moco/citología
19.
Thorax ; 72(2): 154-160, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27382041

RESUMEN

INTRODUCTION: Primary ciliary dyskinesia (PCD) is a genetic disease characterised by abnormalities in ciliary function, responsible for chronic pulmonary and sinonasal diseases. Adult clinical features and outcome are poorly described. OBJECTIVES: To assess the clinical characteristics and disease progression in adults with PCD. METHODS: Bicentric retrospective study, focusing on adults (≥18 years) with an asserted diagnosis of PCD based on the presence of bronchiectasis with typical ultrastructural defect of cilia and/or situs inversus (SI). Clinical symptoms, respiratory function, extent of bronchiectasis, microbiology and molecular analysis were assessed. Results are expressed as median (25th; 75th centile). RESULTS: 78 patients were included with a median follow-up of 8.1 years. 91% of patients had respiratory symptoms and 95% had chronic rhinosinusitis. Half of ultrastructural defects concerned dynein arms. Respiratory function was significantly lower in women (FEV1=60% predicted (50; 76), vs 77% (62; 95), p=0.009) and in patients with chronic airway Pseudomonas aeruginosa (PA, n=21) infection (FEV1=60% (48; 71) vs 75% (55; 89), p=0.04). FEV1 was associated with gender (regression coefficient for men =13.8, p=0.009), chest CT score (r=-0.42, p<0.001) but not with age at diagnosis, SI or body mass index. FEV1 decline was -13.4 mL/year (-42.8; +11.9) and was greater in women (-29.3 mL/year, (-59.7; -11.9), vs -2.0 mL/year (-26.9; +25.4), p=0.002). Three patients had severe respiratory failure. CONCLUSIONS: Alteration of respiratory function in adults with PCD is heterogeneous and usually moderate but appears more severe in women and in patients with chronic PA infection. Only 4% of patients develop chronic respiratory failure.


Asunto(s)
Síndrome de Kartagener/fisiopatología , Pulmón/fisiopatología , Adolescente , Adulto , Anciano , Biopsia , Bronquiectasia/fisiopatología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Pruebas de Función Respiratoria , Estudios Retrospectivos , Rinitis/fisiopatología , Sinusitis/fisiopatología
20.
Eur Respir J ; 49(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836958

RESUMEN

The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.


Asunto(s)
Cilios/ultraestructura , Síndrome de Kartagener/diagnóstico , Cilios/patología , Técnica Delphi , Diagnóstico Diferencial , Europa (Continente) , Técnica del Anticuerpo Fluorescente , Pruebas Genéticas , Humanos , Síndrome de Kartagener/genética , Microscopía Electrónica de Transmisión , Microscopía por Video , Óxido Nítrico/análisis , Literatura de Revisión como Asunto , Sociedades Médicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA